• Title/Summary/Keyword: membrane penetration

Search Result 136, Processing Time 0.032 seconds

The Application of Nanoliposome Composed of Ceramide as an Anti-irritant in Cosmetics (세라마이드를 구성성분으로 하는 나노리포좀의 응용 - 화장품에서의 자극완화제)

  • Jo Byoung Kee;Ahn Gi Woong;Shin Bong Soo;Jeong Ji Hean;Park Hae-Ryong;Hwang Yong-Il
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.267-272
    • /
    • 2005
  • The objective of this study is to suggest the potentialities of nanoliposome composed of ceramide as an anti-irritant against various irritants used in cosmetics. Ceramides are major structural components of the epidermal permeability barrier, which is known to play an essential part in human physiology by not only preventing the loss of water from the body but also protecting the body from external physical, chemical, and microbial insults. According to the results, better effects on reinforcement of skin barrier function and anti-irritation were obtained with nanoliposome composed of ceramide than with dispersed ceramide. And, we performed in vitro skin penetration test using horizontal Franz diffusion cells with skin membrane prepared from hairless mouse to evaluate the influence of nanoliposome composed of ceramide on the skin penetration of lactic acid in formulations. From the results, we found that the anti-irritation effects of nanoliposome containing ceramide were due to reduced penetration rate of irritants. Conclusively, we could develop a new anti-irritation system and apply this nanoliposome composed of ceramide to the final cosmetic products successfully.

Changes in photosynthesis and carbohydrate synthesis in response to elevated UV-B environment (고 자외선 환경에서 식물의 광합성, 기공조절 및 탄수화물 합성)

  • Yun, Hyejin;Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Ha, Sangkeun;Sonn, Yeonkyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.275-281
    • /
    • 2014
  • The ozone depletion has caused plants to be exposed to an increased penetration of solar ultraviolet-B (UV-B) radiation. Enhanced UV-B radiation may have influence on biological functions of plant in many aspects including inhibition of photosynthesis. It is evident that UV-B can potentially impair the performance of all three main component processes of photosynthesis, the photophosphorylation reactions of the thylakoid membrane, the $CO_2$-fixation reactions of the Calvin cycle and stomatal control of $CO_2$ supply. Owing to these depressed reactions, the production and allocation of carbohydrates might be markedly affected, and therefore, the growth and development of plant are distinctly reduced. In this review paper, we provide basic theory and further researches in terms of photosynthesis and carbohydrate synthesis in response to elevated UV-B radiation.

Role of Acrosomal Matrix in Mammalin Fertilization (포유류 수정과정에서 정자 첨체기질의 기능)

  • Kim, Kye-Seong;George L. Gerton
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2001.05b
    • /
    • pp.4-16
    • /
    • 2001
  • Sperm competent for fertilization can become capacitated, bind to the zona pellucida (ZP)of an egg in a specific manner, and complete acrosomal exocytosis. Failure to carry out these functions results in infertility. Although the interactions between the ZP and the plasma membrane overlying the sperm acrosome have been considered important for sperm-egg recognition and signalling recent results have prompted a reassessment of current paradigms concerning these interactions. In this review, we're going to discuss about the roles of the acrosomal matrix, the particulate component of the acrosomal contents, in fertilization. The general hypothesis is that acrosomal exocytosis leads to the exposure of acrosomal matrix proteins that become de facto extracellula matrix(ECM) on the surface of the sperm head, and that the dynamic interactions of this newly-exposed sperm ECM with the egg ECM (the ZP) govern sperm-egg recognition and sperm penetration of the ZP. Informations from these experiments may provide new ways to address the poor ZP binding of sperm from some human infertility patients and may offer new avenues for contraception through the disruption of purposeful sperm-ZP binding.

  • PDF

CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway

  • Kang, Bo-Ram;Kim, Ho;Nam, Sung-Hee;Yun, Eun-Young;Kim, Seong-Ryul;Ahn, Mi-Young;Chang, Jong-Soo;Hwang, Jae-Sam
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.85-90
    • /
    • 2012
  • Our previous study demonstrated that CopA3, a disulfide dimer of the coprisin peptide analogue (LLCIALRKK), has antibacterial activity. In this study, we assessed whether CopA3 caused cellular toxicity in various mammalian cell lines. CopA3 selectively caused a marked decrease in cell viability in Jurkat T, U937, and AML-2 cells (human leukemia cells), but was not cytotoxic to Caki or Hela cells. Fragmentation of DNA, a marker of apoptosis, was also confirmed in the leukemia cell lines, but not in the other cells. CopA3-induced apoptosis in leukemia cells was mediated by apoptosis inducing factor (AIF), indicating induction of a caspase-independent signaling pathway.

Inactivation of mutS Leads to a Multiple-Drug Resistance in Pseudomonas putida ATCC12633

  • KIM JEONG-NAM;LEE SUNG-JAE;LEE HO-SA;RHIE HO-GUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1214-1220
    • /
    • 2005
  • Decreased porin-mediated outer membrane penetration of hydrophilic antibiotics is a common mechanism of antibiotic resistance in Gram-negative bacteria. This study was undertaken to determine whether a null mutation in Pseudomonas putida would suppress porin synthesis, and therefore reduce the susceptibility of the organism to streptomycin, norfloxacin, and tetracycline. Inverse PCR amplification and double-stranded DNA sequencing were used to identify chromosomal genes carrying TnphoA'-1 inserts. Genome database available was used to identify putative homologue genes, one of which encodes protein with homology to domains of the MutS of P. putida, suggesting a crucial role in the multidrug resistance. Increased resistance to streptomycin, norfloxacin, and tetracycline might be due to accumulation of compensatory mutations. Either no growth or slow growth was observed in P. putida KH1027 when grown in minimal medium containing gluconate, glucose, or citrate; however, it is not clear whether the growth patterns contributed to the multidrug resistance.

Electrochemical Activation of Nitrate Reduction to Nitrogen by Ochrobactrum sp. G3-1 Using a Noncompartmented Electrochemical Bioreactor

  • Lee, Woo-Jin;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.836-844
    • /
    • 2009
  • A denitrification bacterium was isolated from riverbed soil and identified as Ochrobactrum sp., whose specific enzymes for denitrification metabolism were biochemically assayed or confirmed with specific coding genes. The denitrification activity of strain G3-1 was proportional to glucose/nitrate balance, which was consistent with the theoretical balance (0.5). The modified graphite felt cathode with neutral red, which functions as a solid electron mediator, enhanced the electron transfer from electrode to bacterial cell. The porous carbon anode was coated with a ceramic membrane and cellulose acetate film in order to permit the penetration of water molecules from the catholyte to the outside through anode, which functions as an air anode. A non-compartmented electrochemical bioreactor (NCEB) comprised of a solid electron mediator and an air anode was employed for cultivation of G3-1 cells. The intact G3-1 cells were immobilized in the solid electron mediator, by which denitrification activity was greatly increased at the lower glucose/nitrate balance than the theoretical balance (0.5). Metabolic stability of the intact G3-1 cells immobilized in the solid electron mediator was extended to 20 days, even at a glucose/nitrate balance of 0.1.

Effect of Particle Crushing on the Results on DMT in Sand (입자 파쇄가 사질토의 DMT 결과에 미치는 영향)

  • Lee, Moon-Joo;Choi, Young-Min;Kim, Min-Tae;Bae, Kyung-Doo;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.740-746
    • /
    • 2010
  • Most important characteristics of calcareous sand are the particle angularity and hollow structure. These characteristics lead to the different behavior of calcareous sand compared to siliceous sand. This study performs a series of dilatometer test using calibration chamber, in order to analyze the effect of particle characteristic of calcareous sand on DMT indices. From experimental test, it is observed that the horizontal stress index($K_D$) and dilatometer modulus($E_D$) of calcareous Jeju sand is underestimated compared to siliceous sand. This is because the particle crushing during penetration induces the less contraction of the dilatometer membrane. A slightly smaller influence of particle crushing is reflected in $E_D$ rather than $K_D$, because $P_1$ pressure reflects the deformation characteristics of un-crushed particle relatively well. It is also observed that $K_D$ of Jeju sand is differently influenced by the vertical effective stress compared with that of siliceous sand.

  • PDF

Points to consider before the insertion of maxillary implants: the otolaryngologist's perspective

  • Kim, Sung Won;Lee, Il Hwan;Kim, Soo Whan;Kim, Do Hyun
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.6
    • /
    • pp.346-354
    • /
    • 2019
  • Maxillary implants are inserted in the upward direction, meaning that they oppose gravity, and achieving stable support is difficult if the alveolar bone facing the maxillary sinus is thin. Correspondingly, several sinus-lifting procedures conducted with or without bone graft materials have been used to place implants in the posterior area of the maxilla. Even with these procedures available, it has been reported that in about 5% of cases, complications occurred after implantation, including acute and chronic sinusitis, penetration of the sinus by the implant, implant dislocation, oroantral fistula formation, infection, bone graft dislocation, foreign-body reaction, Schneiderian membrane perforation, and ostium plugging by a dislodged bone graft. This review summarizes common maxillary sinus pathologies related to implants and suggests an appropriate management plan for patients requiring dental implantation.

Small Molecules that Potentiate Neuroectodermal Differentiation of Mouse Embryonic Stem Cells

  • Lee, Jonghwan;Rhee, Ki-Jong;Jung, Dongju
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.32-40
    • /
    • 2013
  • Pluripotent stem cells (PSCs) have enormous potential in the biomedical sciences because they can grow continuously and differentiate into any kind of cell in the body. However, for future application in regenerative medicine, it is still a challenge to control the differentiation of PSCs without using genetic materials. To control the differentiation of PSCs, small molecules might be the best substitute for genetic materials considering the following advantages: small size, which enables penetration of plasma membrane; easy-to-modify structure; and low chance of genetic recombination in treated cells. Herein, we introduce small molecules that induce the neuroectodermal differentiation of mouse embryonic stem cells (ESCs). The small molecules were identified via ESC-based consecutive screenings of small-molecule libraries composed of 324 natural compounds or 93 selected drugs. The natural compounds discovered in the first screening were used to select 93 structurally similar drugs out of 1,200 approved drugs. In the second screening, among the 93 compounds, we found 4 drugs that induced the neuroectodermal differentiation of ESCs. These drugs were progesteroneor corticoid-derivatives. Our results suggest that small molecules targeting the progesterone receptor or glucocorticoid receptor could be used as chemical tools to induce the differentiation of PSCs into a specific germ lineage.

Influences of Temperature and Light on the Herbicidal Activity of Bleaching Herbicides (Bleaching Herbicides의 제초활성에 영향을 미치는 온도 및 광의 영향)

  • Kim, J.S.;Na, J.Y.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.9 no.3
    • /
    • pp.230-237
    • /
    • 1989
  • This research was carried out to investigate the influences of temperature and light on the herbicidal activity of oxyfluorfen, oxadiazon and paraquat. Increased temperature from 10 to $35^{\circ}C$ resulted in increase of herbicidal activity in whole plants or leaf discs treated with herbicides. It seemed that temperature affected herbicide penetration into and reaction to the action site rather than appearance process of herbicidal activity (maybe membrane peroxidation after being absorbed. The activity of compounds tested increased with increased light intensity. Paraquat showed similar activities regardless of light qualities but oxyfluorfen and oxadiazon showed the highest activities in blue light spectrum, indicating that they seemed to be closely related to chlorophyll biosynthesis rather than carotenoid biosynthesis or electron transport systems of photosynthesis and respiration.

  • PDF