Inactivation of mutS Leads to a Multiple-Drug Resistance in Pseudomonas putida ATCC12633

  • KIM JEONG-NAM (Department of Biology, Research Institute for Basic Science, Kyung Hee University) ;
  • LEE SUNG-JAE (Department of Biology, Research Institute for Basic Science, Kyung Hee University) ;
  • LEE HO-SA (Department of Biology, Research Institute for Basic Science, Kyung Hee University) ;
  • RHIE HO-GUN (Department of Biology, Research Institute for Basic Science, Kyung Hee University)
  • Published : 2005.12.01

Abstract

Decreased porin-mediated outer membrane penetration of hydrophilic antibiotics is a common mechanism of antibiotic resistance in Gram-negative bacteria. This study was undertaken to determine whether a null mutation in Pseudomonas putida would suppress porin synthesis, and therefore reduce the susceptibility of the organism to streptomycin, norfloxacin, and tetracycline. Inverse PCR amplification and double-stranded DNA sequencing were used to identify chromosomal genes carrying TnphoA'-1 inserts. Genome database available was used to identify putative homologue genes, one of which encodes protein with homology to domains of the MutS of P. putida, suggesting a crucial role in the multidrug resistance. Increased resistance to streptomycin, norfloxacin, and tetracycline might be due to accumulation of compensatory mutations. Either no growth or slow growth was observed in P. putida KH1027 when grown in minimal medium containing gluconate, glucose, or citrate; however, it is not clear whether the growth patterns contributed to the multidrug resistance.

Keywords

References

  1. Allen, D. J., A. Makhov, M. Grilley, J. Taylor, R. Thresher, P. Modrich, and J. D. Griffith. 1997. MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J. 16: 4467-4476 https://doi.org/10.1093/emboj/16.14.4467
  2. Bjorkholm, B., M. Sjölund, P. G. Falk, O. G. Berg, L. Engstrand, and D. I. Andersson. 2001. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc. Natl. Acad. Sci. USA 98: 14607-14612
  3. Bjorkman, J., I. Nagaev, O. G. Berg, D. Hughes, and D. I. Andersson. 2000. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287: 1479-1482 https://doi.org/10.1126/science.287.5457.1479
  4. Burns, J. L. and D. K. Clark. 1992. Salicylate-inducible antibiotic resistance in Pseudomonas cepacia associated with absence of a pore-forming outer membrane protein. Antimicrob. Agents Chemother. 36: 2280-2285 https://doi.org/10.1128/AAC.36.10.2280
  5. Cohen, S. P., L. M. McMurry, and S. B. Levy. 1988. marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J. Bacteriol. 170: 54
  6. Feinstein, S. L. and K. B. Low. 1986. Hyper-recombining recipient strains in bacterial conjugation. Genetics 113: 13-33
  7. Han, H. S., Y. J. Koh, J. S. Hur, and J. S. Jung. 2003. Identification and characterization of coronatine-producing Pseudomonas syringae pv. actinidiae. J. Microbiol. Biotechnol. 13: 110-118
  8. Hancock, R. E. W. 1987. Role of porin in outer membrane permeability. J. Bacteriol. 169: 929-933 https://doi.org/10.1128/jb.169.3.929-933.1987
  9. Hirai, K., S. Suzue, T. Irikura, S. Iyobe, and S. Mitsuhashi. 1987. Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 31: 582-586 https://doi.org/10.1128/AAC.31.4.582
  10. Horst, J. P., T. H. Wu, and M. G. Marinus. 1999. Escherichia coli mutator genes. Trends Microbiol. 7: 29-36 https://doi.org/10.1016/S0966-842X(98)01424-3
  11. Inoue, Y., K. Sato, T. Fujii, K. Hirai, M. Inoue, S. Iyobe, and S. Mitsuhashi. 1987. Some properties of subunits of DNA gyrase from Pseudomonas aeruginosa PAO1 and its nalidixic acid resistant mutant. J. Bacteriol. 169: 2322-2325 https://doi.org/10.1128/jb.169.5.2322-2325.1987
  12. Ramos-Gonzalez, I. M. and S. Molin. 1998. Cloning, sequencing, and phenotypic characterization of the rpoS gene from Pseudomonas putida KT2440. J. Bacteriol. 180: 3421-3431
  13. Kim, J. W., J. G. Kim, B. K. Park, O. H. Choi, C. S. Park, and I. G. Hwang. 2003. Identification of genes for biosynthesis of antibacterial compound from Pseudomonas fluorescens B16, and its activity against Ralstonia solanacearum. J. Microbiol. Biotechnol. 13: 292-300
  14. Kim. Y. C., C. S. Kim, B. H. Cho, and A. J. Anderson. 2004. Major Fe-superoxide dismutase (FeSOD) activity in Pseudomonas putida is essential for survival under conditions of oxidative stress during microbial challenge and nutritional limitation. J. Microbiol. Biotechnol. 14: 859-862
  15. Kim, Y.-J., L. S. Watrud, and A. Matin. 1995. A carbon starvation survival gene of Pseudomonas putida is regulated by ${\sigma}^{54}$. J. Bacteriol. 177: 1850-1859 https://doi.org/10.1128/jb.177.7.1850-1859.1995
  16. Kohler, T., M. Kok, M. Michea-Hamzehpour, P. Plesiat, N. Gotoh, and T. Nishino. 1996. Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 40: 2288-2290
  17. Kohler, T., J. C. Pechere, and P. Plesiat. 1999. Bacterial antibiotic efflux systems of medical importance. Cell. Mol. Life Sci. 56: 771-778 https://doi.org/10.1007/s000180050024
  18. Komatsu, T., M. Ohta, N. Kido, Y. Arakawa, H. Ito, T. Mizuno, and N. Kato. 1990. Molecular characterization of an Enterobacter cloacae gene (romA) which pleiotropically inhibits the expression of Escherichia coli outer membrane proteins. J. Bacteriol. 172: 4082-4089 https://doi.org/10.1128/jb.172.7.4082-4089.1990
  19. LeClerc, J. E., B. G. Li, W. L. Payne, and T. A. Cebula. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274: 1208-1211 https://doi.org/10.1126/science.274.5290.1208
  20. Li, X.-Z., D. M. Livermore, and H. Nikaido. 1994. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: Resistance to tetracycline, chloramphenicol and norfloxacin. Antimicrob. Agents Chemother. 38: 1732-1741 https://doi.org/10.1128/AAC.38.8.1732
  21. Li, X.-Z., D. M. Livermore, and H. Nikaido. 1994. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: Active efflux as contributing to $\beta$-lactam resistance. Antimicrob. Agents Chemother. 38: 1742-1752 https://doi.org/10.1128/AAC.38.8.1742
  22. Li, X.-Z., L. Zhang, and K. Poole. 1998. Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J. Bacteriol. 180: 2987-2991
  23. Martinez, J. L. and F. Baquero. 2000. Mutation frequencies and antibiotic resistance. Antimicrob. Agents Chemother. 44: 1771-1777 https://doi.org/10.1128/AAC.44.7.1771-1777.2000
  24. Martinez, J. L. and F. Baquero. 2002. Interactions among strategies associated with bacterial infection: Pathogenecity, epidemicity, and antibiotic resistance. Clin. Microbiol. Rev. 15: 647-679 https://doi.org/10.1128/CMR.15.4.647-679.2002
  25. McMurry, L. M., J. C. Cullinane, and S. B. Levy. 1982. Transport of the lipophilic analog minocycline differs from that of tetracycline in susceptible and resistant Escherichia coli strains. Antimicrob. Agents Chemother. 22: 791-799 https://doi.org/10.1128/AAC.22.5.791
  26. Modrich, P. and R. Lahue. 1996. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65: 101-133 https://doi.org/10.1146/annurev.bi.65.070196.000533
  27. Nikaido, H., E. Y. Rosenberg, and J. Foulds. 1983. Porin channels in Escherichia coli: Studies with $\beta$-lactams in intact cells. J. Bacteriol. 153: 232-240
  28. Nikaido, H. 1989. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 33: 1831-1836 https://doi.org/10.1128/AAC.33.11.1831
  29. Ochman, H., A. S. Gerber, and D. L. Hartl. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120: 621-623
  30. Oliver, A., R. Canton, P. Campo, F. Baquero, and J. Blázquez. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 1251-1253 https://doi.org/10.1126/science.288.5469.1251
  31. Orencia, M. C., J. S. Yoon, J. E. Ness, W. P. Stemmer, and R. C. Stevens. 2001. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis. Natl. Struct. Biol. 8: 238-242 https://doi.org/10.1038/84981
  32. Parker, B. O. and M. G. Marinus. 1992. Repair of DNA heteroduplex containing small heterologous sequences in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 1730-1734
  33. Pugsley, A. P. and C. A. Schnaitman. 1978. Outer membrane proteins of Escherichia coli. VII. Evidence that bacteriophagedirected protein 2 functions as a pore. J. Bacteriol. 133: 1181-1189
  34. Robillard, N. J., and A. L. Scarpa. 1988. Genetic and physiologic characterization of ciprofloxacin resistance in Pseudomonas aeruginosa PAO. Antimicrob. Agents Chemother. 32: 535-539 https://doi.org/10.1128/AAC.32.4.535
  35. Rosner, J. L., T. J. Chai, and J. Foulds. 1991. Regulation of OmpF porin expression by salicylate in Escherichia coli. J. Bacteriol. 173: 5631-5638 https://doi.org/10.1128/jb.173.18.5631-5638.1991
  36. Simons, R. W., F. Houman, and N. Kleckner. 1987. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53: 85-96 https://doi.org/10.1016/0378-1119(87)90095-3
  37. Su, S. S. and P. Modrich. 1986. Escherichia coli mutsencoded protein binds to mismatched DNA base pairs. Proc. Natl. Acad. Sci. USA 83: 5057-5061
  38. Tanabe, K., T. Kondo, Y. Onodera, and M. Furusawa. 1999. A conspicuous adaptability to antibiotics in the Escherichia coli mutator strain, dnaQ49. FEMS Microbiol. Lett. 176: 191-196 https://doi.org/10.1111/j.1574-6968.1999.tb13661.x
  39. Tian, K.-L., J.-Q. Lin, X.-M. Liu, Y. L., C.-K. Zhang, and W.-M. Yan. 2004. Expression of E. coli phosphofructokinase gene in an autotrophic bacterium Acidithiobacillus thiooxidans. J. Microbiol. Biotechnol. 14: 56-61
  40. Vamaguchi, M., V. Dao, and P. Modrich. 1998. MutS and MutL activate helicase II in a mismatch-dependent manner. J. Biol. Chem. 273: 9197-9201 https://doi.org/10.1074/jbc.273.15.9197
  41. Wilmes-Riesenberg, M. R. and B. L. Wanner. 1992. TnphoA and TnphoA' elements for making and switching fusions for study of transcription, translation, and cell surface localization. J. Bacteriol. 174: 4558-4575 https://doi.org/10.1128/jb.174.14.4558-4575.1992
  42. Yi, J. H., K. O. Lee, and S. G. Choi. 2004. Cloning and expression of a novel chitosanase gene (choK) from $\beta$- Proteobacterium KNU3 by double inverse PCR. J. Microbiol. Biotechnol. 14: 563-569
  43. Zahrt, T. C., N. Buchmeier, and S. Maloy. 1999. Effects of mutS and recD mutations on Salmonella virulence. Infect. Immun. 67: 6168-6172