Browse > Article
http://dx.doi.org/10.4014/jmb.0810.569

Electrochemical Activation of Nitrate Reduction to Nitrogen by Ochrobactrum sp. G3-1 Using a Noncompartmented Electrochemical Bioreactor  

Lee, Woo-Jin (Department of Biological Engineering, Seokyeong University)
Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.8, 2009 , pp. 836-844 More about this Journal
Abstract
A denitrification bacterium was isolated from riverbed soil and identified as Ochrobactrum sp., whose specific enzymes for denitrification metabolism were biochemically assayed or confirmed with specific coding genes. The denitrification activity of strain G3-1 was proportional to glucose/nitrate balance, which was consistent with the theoretical balance (0.5). The modified graphite felt cathode with neutral red, which functions as a solid electron mediator, enhanced the electron transfer from electrode to bacterial cell. The porous carbon anode was coated with a ceramic membrane and cellulose acetate film in order to permit the penetration of water molecules from the catholyte to the outside through anode, which functions as an air anode. A non-compartmented electrochemical bioreactor (NCEB) comprised of a solid electron mediator and an air anode was employed for cultivation of G3-1 cells. The intact G3-1 cells were immobilized in the solid electron mediator, by which denitrification activity was greatly increased at the lower glucose/nitrate balance than the theoretical balance (0.5). Metabolic stability of the intact G3-1 cells immobilized in the solid electron mediator was extended to 20 days, even at a glucose/nitrate balance of 0.1.
Keywords
Ochrobactrum sp.; solid electron mediator; air anode; denitrification;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Gauthier, D. K., G. D. Clark-Walker, W. T. Garrard Jr., and J. Lascelles. 1970. Nitrate reductase and soluble cytochrome C in Spirillum itersonii. J. Bacteriol. 102: 797-803
2 Hoeren, F. U., B. C. Berks, S. J. Ferguson, and J. E. McCarthy. 1993. Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase from Paracoccus denitrificans. New and conserved structural and regulatory motifs. Eur. J. Biochem. 218: 49-57   DOI   ScienceOn
3 Hummel, W. 1999. Large-scale applications of NAD(P)-dependent oxidoreductases: Recent developments. Trends Biotechnol. 17: 487-492   DOI   PUBMED   ScienceOn
4 Kim, Y. H., Y. J. Park, S. H. Song, and Y. J. Yoo. 2007. Nitrate removal without carbon source feeding by permeabilized Ochrobactrum anthropi SY509 using an electrochemical bioreactor. Enz. Microb. Technol. 41: 663-668   DOI   ScienceOn
5 Knowles, R. 1982. Denitrification. Microbiol. Rev. 46: 43-70   PUBMED   ScienceOn
6 Nakano, M. M., T. Hoffmann, Y. Zhu, and D. Jahn. 1998. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by Tnr and ResDE. J. Bacteriol. 180: 5344-5350
7 Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100-180   PUBMED   ScienceOn
8 Traore, A. S., C. Gaudin, C. E. Hatchikian, J. Le Gall, and J.-P. Belaich. 1983. Energy of growth of a defined mixed culture of Desulfovibrio vulgaris and Methanosarcina barkeri: Maintenance energy coefficient of the sulfite-reducing organism in the absence and presence of its partner. J. Bacteriol. 155: 1260- 1264
9 Smith, R. L., M. L. Ceazan, and M. H. Brooks. 1994. Autotrophic hydrogen-oxidizing bacteria in groundwater, potential agents for bioremediation of nitrate contamination. Appl. Environ. Microbiol. 64: 1949-1955
10 Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411   ScienceOn
11 Brooks, M. H., R. L. Smith, and D. L. Macalady. 1992. Inhibition of existing denitrification enzyme activity by chloramphenicol. Appl. Environ. Microbiol. 58: 1746-1753   PUBMED   ScienceOn
12 Isaacs, S., M. Henze, H. Soeberg, and M. Jummel. 1994. External carbon source addition as a means to control an activated sludge nutrient removal process. Wat. Res. 28: 511-520   DOI   ScienceOn
13 Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85   ScienceOn
14 Wu, L., J. van Dam, D. Schipper, M. T. A. Penia Kresnowati, A. M. Proell, C. Ras, W. A. van Winden, W. M. van Gulik, and J. J. Heijnen. 2006. Short-term metabolome dynamics and carbon, electron and ATP balances in chemostat-grown Saccharomyces cerevisiae CEN.PK113-70 following a glucose pulse. Appl. Environ. Microbiol. 72: 3566-3577   DOI   ScienceOn
15 Cole, J. 1993. Controlling environmental nitrogen through microbial metabolism. Tibtech 11: 368-372   DOI   ScienceOn
16 Nishiyama, M., J. Suzuki, M. Kusimoto, T. Ohnuki, S. Horinouchi, and T. Beppu. 1993. Cloning and characterization of a nitrite reductase gene from Alcaligenes faecalis and its expression in Escherichia coli. J. Gen. Microbiol. 139: 725-733   DOI   PUBMED   ScienceOn
17 Steingruber, S. M., J. Friedrich, R. Gachter, and B. Wehrli. 2001. Measurement of denitrification in sediments with the $^{15}$N isotope paring technique. Appl. Environ. Microbiol. 67: 3771-3778   DOI   ScienceOn
18 Premakumar, R., G. J. Sorger, and D. Gooden. 1979. Nitrogen metabolite repression of nitrate reductase in Neurospora crassa. J. Bacteriol. 137: 1119-1127
19 Willner, I. and D. Mandler. 1989. Enzyme-catalyzed biotransformations through photochemical regeneration of nicotinamide cofactors. Enzyme Microb. Technol. 11: 467-483   DOI   ScienceOn
20 Shin, H. S., M. K. Jain, M. Chartain, and J. G. Zeikus. 2001. Evaluation of an electrochemical bioreactor system in the biotransformation of 6-bromo-2-tetralone to 6-bromo-2-tetraol. Appl. Environ. Microbiol. 57: 506-510
21 Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533-616   ScienceOn
22 Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410
23 Garcia-Ruiz, R., S. N. Pattinson, and B. A. Whitton. 1998. Kinetic parameters of denitrification in a river continuum. Appl. Environ. Microbiol. 64: 2533-2538   PUBMED   ScienceOn
24 Braker, G. and J. M. Teidje. 2003. Nitric oxide reductase (norB) genes from pure culture and environmental samples. Appl. Environ. Microbiol. 69: 3476-3483   DOI   ScienceOn
25 Park, D. H., M. Laiveniek, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-2917   PUBMED   ScienceOn
26 Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81: 348-355   DOI   ScienceOn
27 van der Donk, W. A. and H. Zhao. 1999. Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14: 421-426   DOI   ScienceOn
28 Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61   DOI   ScienceOn
29 Abril, O. and G. M. Whitesides. 1982. Hybrid organometallic/ enzymatic catalyst systems: Regeneration of NADH using dihydrogen. J. Am. Chem. Soc. 104: 1552-1554   DOI
30 Choi, K. O., S. H. Song, Y. H. Kim, D. H. Park, and Y. J. Yoo. 2006. Bioelectrochemical denitrification using permeabilized Ochrobactrum anthropi SY509. J. Microbiol. Biotechnol. 16: 678-682   ScienceOn
31 Park, D. H., S. K. Kim, I. H. Shin, and Y. J. Jeong. 2000. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotech. Lett. 22: 1301-1304   DOI   ScienceOn