• Title/Summary/Keyword: membrane chemistry

Search Result 1,172, Processing Time 0.036 seconds

Antimicrobial Activity of Hetero-Chitosans and Their Oligosaccharides with Different Molecular Weights

  • Park, Pyo-Jam;Je, Jae-Young;Byun, Hee-Guk;Moon, Sung-Hoon;Kim, Se-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.317-323
    • /
    • 2004
  • This study was performed to investigate the antimicrobial effects of hetero-chitosans and their oligosaccharides against three Gram-negative bacteria and five Gram-positive bacteria. Nine classes of hetero-chitosan oligosaccharides consisted of partially deacetylated chitosans; 90%, 75%, and 50% deacetylated chitosans. Based on molecular weight, they were prepared using an ultrafiltration membrane reactor system. Seventy-five percent deacetylated chitosan showed the highest antimicrobial acitivity as compared with the 90% and 50% deacetylated chitosan, and the activity was dependent on their molecular weights. It was apparent that the growth of Gram-negative bacteria is less inhibited in the presence of the heterochitosans and their oligosaccharides than Gram-positive bacteria. These results revealed that the antimicrobial effects of hetero-chitosans and their oligosaccharides depend on the degree of deacetylation, and their molecular weights.

Changes in Structural and Functional Responses of Bacterial Communities under Different Levels of Long-Term Compost Application in Paddy Soils

  • Samaddar, Sandipan;Han, Gwang Hyun;Chauhan, Puneet Singh;Chatterjee, Poulami;Jeon, Sunyoung;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.292-296
    • /
    • 2019
  • Soils amended for long-term with high levels of compost demonstrated greater abundance of bacterial members of the phylum Bacteroidetes whereas a decreasing trend in the relative abundance of phylum Acidobacteria was noted with increasing levels of compost. Metabolic profiles predicted by PICRUSt demonstrated differences in functional responses of the bacterial community according to the treatments. Soils amended with lower compost levels were characterized by abundance of genes encoding enzymes contributing to membrane transport and cell growth whereas genes encoding enzymes related to protein folding and transcription were enriched in soils amended with high levels of compost. Thus, the results of the current study provide extensive evidence of the influence of different compost levels on bacterial diversity and community structure in paddy soils.

Lanthanum-induced Inhibitions of Microsomal $H^+-ATPase$ in the Roots of Tomato ($La^{3+}$에 의한 토마토 뿌리조직 마이크로솜 $H^+-ATPase$ 활성저해)

  • Cho, Kwang-Hyun;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.84-89
    • /
    • 2003
  • In order to find a chemical agent which is able to modulate the activity of $H^+-ATPase$, microsomal preparation was obtained from the root tissue of tomato plant and the effect of $La^{3+}$ was measured. The activities of plasma and vacuolar membrane $H^+-ATPase$ were analyzed by the inhibited activities using their specific inhibitors, vanadate and $NO_3-$, respectively. $La^{3+}$ inhibited microsomal ATPases in a dose-dependent manner and the inhibitory effect of $La^{3+}$ was suppressed by both vanadate and $NO_3-$, implying that $La^{3+}$ inhibits both plasma and vacuolar membrane $H^+-ATPase$. The Ki. values of $La^{3+}$which inhibit 50% of the activities of plasma and vacuolar membrane $H^+-ATPase$ were 57 and $78\;{\mu}M$, respectively. The $H^+-ATPase$ of the leaky microsomes made by the treatment of Triton X-100 were also inhibited by $La^{3+}$, suggesting that $La^{3+}$ directly inhibits both enzymes. Meanwhile, the inhibitory effect of $La^{3+}$ was decreased by increasing the concentration of ATP, The effect of ATP was also concentration-dependent and 7 mM ATP completely removed the inhibitory effect of $La^{3+}$. These results imply that $La^{3+}$ inhibits both plasma and vacuolar membrane $H^+-ATPases$ by decreasing the binding affinity of ATP and $La^{3+}$ can be used to control the activity or root $H^+-ATPases$.

Preparation and Adsorption Properties of PA6/PSMA-OA Molecularly Imprinted Composite Membranes in Supercritical CO2

  • Zhang, Qing;Zhang, Xingyuan;Zhang, Wencheng;Pan, Jian;Liu, Ling;Zhang, Haitao;Zhao, Dong;Li, Zhi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3348-3354
    • /
    • 2011
  • Oleanolic acid (OA) as template molecule, polyamide-6 (PA6) as basement membrane and poly(styrene-comaleic acid) (PSMA) were used to prepare PA6/PSMA-OA molecularly imprinted composite membranes by phase inversion method in supercritical $CO_2$ ($ScCO_2$). The template molecule (OA), [poly(styrene-co-maleic anhydride) (PSMAH), PSMA, molecularly imprinted membranes (MIMs) imprinting OA and MIMs after elution were all characterized by Fourier transform infrared spectroscopy (FTIR). The conditions that were the mass ratio between PSMA and OA from 3:1 to 8:1, temperature of $ScCO_2$ from $35^{\circ}C$ to $50^{\circ}C$ and pressure of $ScCO_2$ 12 MPa to 17 MPa were studied. It was obtained the largest adsorption rate and purity of OA after adsorption of the resultant MIMs, 50.41% and 96.15% respectively. After using PA6 film and non-woven fabrics as basement membrane respectively, it was found that smaller aperture of PA6 was used as basement membrane, a higher adsorption rate and a higher purity of OA after adsorption of the MIMs were obtained, and so were the stability and reproducibility of the resultant MIMs. After template molecules being removed, the MIMs had effective selectivity hydrogen bonding to separately bind in the binary components to the template molecules-oleanolic acid.

Characterization of Nafion/Poly(ether(amino sulfone)) Acid-base Blend Polymer Electrolyte Membranes for Direct Dimethyl Ether Fuel Cell (Nafion/poly(ether(amino sulfone)) 산-염기 블렌드 전해질막을 이용한 디메틸 에테르 직접연료전지 특성연구)

  • Park Sun-Mi;Choi Won-Choon;Nam Seung-Eun;Lee Kew-Ho;Oh Se-Young;Lee Chang-Jin;Kang Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Nafion/poly(ether(amino sulfone)) acid-base blend polymer electrolyte membranes were prepared and their proton conductivity and dimethyl ether permeability were investigated. Characteristics of direct dimethyl ether fuel cell (DDMEFC) performance using prepared blend membrane were studied. The increase of amine groups in the base polymer in composite membranes resulted in the decrease in dimethyl ether permeability. The proton conductivity of the blend membranes gradually increased as increasing temperature. The conductivity of Nafion/PEAS-0.6 (85:15) blend membranes was measured to be $1.42\times10^{-2}S/cm\;at\;120^{\circ}C$ which was higher than that of the recast Nafion. The performance of direct dimethyl ether fuel cell (DDMEFC) using the Nafion/PEAS blend membranes was higher than that using $Nafion^(R)115$ membrane. Enhanced performance of direct dimethyl ether fuel cells using Nafion/PEAS blend membrane was explained by reducing dimethyl ether (DME) crossover through the electrolyte membrane and maintenance of the proton conductivity at high temperature.

Construction and Optimization of Selective Membrane Electrodes for Determination of Doxepin Hydrochloride in Pharmaceutical Preparations and Biological Fluids (약의 조제와 생물학적 유체에서 독스핀 하이드로클로라이드의 확인을 위한 선택적 막 전극의 구성과 최적화)

  • El-Tohamy, Maha;Razeq, Sawsan;El-Maamly, Magda;Shalaby, Abdalla
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.198-207
    • /
    • 2010
  • The construction and performance characteristics of doxepin hydrochloride selective electrodes were developed. Three types of electrodes: plastic membrane I, coated wire II, and coated graphite rod III were constructed based on the incorporation of doxepin hydrochloride with ammonium reineckate. The influence of membrane composition, kind of plasticizer, pH of the test solution, soaking time, and foreign ions on the electrodes was investigated. The electrodes showed a Nernstain response with a mean slope of 57.41 ${\pm}$ 0.5, 56.22 ${\pm}$ 0.2 and 52.88 ${\pm}$ 0.7 mV at $25^{\circ}C$ for electrode I, II and III respectively, over Doxepin hydrochloride concentration range from $1{\times}10^{-2}-1{\times}10^{-6}M$, $5{\tims}10^{-2}-1{\times}10^{-6}M$ and $1{\times}10^{-3}-5{\times}10^{-6}M$, and with a detection limit $5.0{\times}10^{-7}M$, $6.3{\times}10^{-7}M$ and $2.5{\times}10^{-6}M$ for electrode I, II and III respectively. The constructed electrodes gave average selective precise and usable within the pH range 3 - 7. Interferences from common cations, alkaloids, sugars, amino acids and drug excipients were reported. The results obtained by the proposed electrodes were also applied successfully to the determination of the drug in pharmaceutical preparations and biological fluids.

Preparation and Characterization of Polysulfone Membranes Using PVP as an Additive (폴리비닐피롤리돈 첨가제를 이용한 폴리설폰막의 제조 및 특성 분석)

  • Lee, Jin Young;Lee, Kune Woo;Han, Myeong-Jin;Park, So-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.277-285
    • /
    • 2011
  • Polysulfone (PSf) membranes were prepared via the phase inversion process. Polyvinylpyrrolidone (PVP) was added as a nonsolvent additive in the casting solution containing a mixture of PSf and n-methylpyrrolidone. The added PVP played a role of enhancing liquid-liquid phase separation of the casting solution, and significantly reduced the solution fluidity. When prepared via the diffusion-induced process using water as a precipitation nonsolvent, the solidified membranes revealed a typical asymmetric structure irrespective of the addition of PVP. With 5 wt% PVP content, the finger-like cavities were more developed in the membrane sublayer compared to that of the membranes prepared without PVP. In contrast, with more than 10 wt% of PVP, the formation of finger-like cavities was suppressed, and the thickness of polymer nodule layer was increased. The surface porosity was also increased with the PSf content in the casting solution. The water permeability curve as a function of PVP addition revealed the inflection point. The maximum water permeability for 12 wt% PSf membrane was obtained with 5 wt% PVP content, and that for 18 wt% PSf membrane with 15 wt% PVP.

Distribution of Heavy Metal in the Cell Components of Heavy Metal-Tolerant Microorganisms (중금속내성균의 세포내 중금속 분포)

  • Cho, Ju-Sik;Lee, Won-Kyu;Choi, Hyoung-Sub;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.55-60
    • /
    • 1997
  • Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri which possessed the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wastewaters polluted with various heavy metals. The distribution of heavy metal in the cell components, and amino acid compositions, was investigated. The distribution of heavy metal in the cell fractions of each heavy metal-tolerant microorganism grown for 20 hours in the basal medium containing 100mg/l of each heavy metal was investigated. In the case of cadmium-tolerant P. putida, lead-tolerant P. aeruginosa and copper-tolerant P. stutzeri, approximately $50{\sim}60%,\;30{\sim}40%$ and $10{\sim}17%$ of each heavy metal absorbed were distributed to cell wall, cell membrane and cytoplasm fractions, respectively. In the case of zinc-tolerant P. chlororaphis, approximately 32%, 55% and 13% of zinc were distributed to cell wall, cell membrane and cytoplasm fractions, respectively. These results indicated that the cell wall was a major adsorbing fraction of cadmium, lead and copper, and the cell membrane was that of zinc. Total amino acid content per gram of the cell grown in the culture media with heavy metal was higher than that of the cell grown in the culture media without heavy metal, and the content of acidic amino acids, such as aspartic acid(Asp.+Asn.) and glutamic acid(Glu.+Gln.) was higher than that of basic amino acids, such as histidine, lysine and arginine.

  • PDF

Synthesis of Soluble Copolyimides Using an Alicyclic Dianhydride and Their $CO_2/CH_4$ Separation Properties (지환족 다이안하이드라이드를 이용한 용해성 폴리이미드 공중합체 합성 및 메탄/이산화탄소 분리특성)

  • Park, Chae Young;Lee, Yongtaek;Kim, Jeong Hoon
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this study, four soluble homo- and co-polyimides using 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) and 4,4'-diaminodiphenyl ether (ODA) monomers were synthesized to develop the gas separation membrane with good $CO_2/CH_4$ separation properties. To prepare the copolyimides, 20 mol% of three dianhydrides - (4,4'-(hexafluoroisoproplidene)diphthalic anhydride (6FDA), 4,4'-biphthalic anhydride (BPDA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) - were added in DOCDA-ODA monomer mixture, respectively. All the synthesized homo- and co-polyimides were characterized by FT-IR. Their thermal properties were analyzed with differential scanning calorimeter (DSC). Dense membranes were prepared from these copolyimides to check their gas permeation properties for $CO_2$ and $CH_4$ gases using a time-lag method. The permeation testing results are as follows; DOCDA/ODA homopolymer showed 1.71 barrer of $CO_2$ permeability and 74.35 of $CO_2/CH_4$ selectivity. The three polyimide copolymers (DOCDA/6FDA-ODA, DOCDA/BPDA-ODA, DOCDA/BTDA-ODA) showed lower $CO_2/CH_4$ selectivities and higher $CO_2$ permeabilities than the homopolymer (DOCDA-ODA). DOCDA/6FDA-ODA showed twice times higher $CO_2$ permeabilities without severe $CO_2/CH_4$ selectivity loss than the DOCDA-ODA.

Stabilization of Covalently Cross-Linked SPEEK/Cs-Substituted HPA Composite Membranes for Water Electrolysis ($Cs^+$치환에 따른 수전해용 공유가교 SPEEK/HPA 복합막의 안정화)

  • Jee, Bong-Chul;Ha, Sung-In;Song, Min-Ah;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • To improve the mechanical properties, such as durabilities and antioxidative characteristics, the covalently cross-linked (CL-) SPEEK (sulfonated polyether ether ketone)/Cs-substituted HPA (heteropoly acid) organic-inorganic composite membranes (CL-SPEEK/Cs-HPAs), have been intensively investigated. The composite membrane were prepared by blending cesium-substituted HPAs (Cs-HPAs), including tungstophosphoric acid (TPA), molybdophosphoric acid (MoPA), and tungstosilicic acid (TSiA) with cross-linking agent content of 0.01 mL. And composite electrolytes composed of Cs-HPAs, prepared by immersion (imm.) and titration (titr.) methods to increase the stability of HPAs in water, were applied to polymer electrolyte membrane electrolysis (PEME). As a result, the proton conductivity of Cs-substituted composite membranes increased rapidly over $60^{\circ}C$ but mechanical properties, such as tensile strength, decreased in accordance with added Cs content. The bleeding-out of Cs-TPA membranes by titration method (50 vol.% Cs) decreased steadily to 2.15%. In the oxidative stability test by Fenton solution, the durability of membranes with Cs-HPA significantly increased. In case of CL-SPEEK/ Cs-TPA membrane, duration time increased more than 1200 hours. It is expected that even though CL-SPEEK/Cs-MoPA membrane shows the high proton conductivity, electrocatalytic activity and cell voltage of 1.80 V for water electrolysis, the CL-SPEEK/Cs-TPA (imm.) is more suitable as an alternative membrane in real system with the satisfactory proton conductivity, mechanical properties, anti-oxidative stability and cell voltage of 1.89 V.