Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.1.1

Synthesis of Soluble Copolyimides Using an Alicyclic Dianhydride and Their $CO_2/CH_4$ Separation Properties  

Park, Chae Young (Resources Separation and Recovery Research Group, Division of Green Chemistry and Process, Korea Research Institute of Chemical Technology)
Lee, Yongtaek (Department of Bio-Applied Chemistry, Chungnam National University)
Kim, Jeong Hoon (Resources Separation and Recovery Research Group, Division of Green Chemistry and Process, Korea Research Institute of Chemical Technology)
Publication Information
Membrane Journal / v.24, no.1, 2014 , pp. 1-9 More about this Journal
Abstract
In this study, four soluble homo- and co-polyimides using 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) and 4,4'-diaminodiphenyl ether (ODA) monomers were synthesized to develop the gas separation membrane with good $CO_2/CH_4$ separation properties. To prepare the copolyimides, 20 mol% of three dianhydrides - (4,4'-(hexafluoroisoproplidene)diphthalic anhydride (6FDA), 4,4'-biphthalic anhydride (BPDA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) - were added in DOCDA-ODA monomer mixture, respectively. All the synthesized homo- and co-polyimides were characterized by FT-IR. Their thermal properties were analyzed with differential scanning calorimeter (DSC). Dense membranes were prepared from these copolyimides to check their gas permeation properties for $CO_2$ and $CH_4$ gases using a time-lag method. The permeation testing results are as follows; DOCDA/ODA homopolymer showed 1.71 barrer of $CO_2$ permeability and 74.35 of $CO_2/CH_4$ selectivity. The three polyimide copolymers (DOCDA/6FDA-ODA, DOCDA/BPDA-ODA, DOCDA/BTDA-ODA) showed lower $CO_2/CH_4$ selectivities and higher $CO_2$ permeabilities than the homopolymer (DOCDA-ODA). DOCDA/6FDA-ODA showed twice times higher $CO_2$ permeabilities without severe $CO_2/CH_4$ selectivity loss than the DOCDA-ODA.
Keywords
soluble; polyimide; copolyimide; gas separation; $CO_2/CH_4$; membrane;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. M. Moy and J. E. McGrath, "Synthesis of hydroxyl- containing polyimides derived from 4,6-diamino- resorcinol dihydrochloride and aromatic tetracarboxylic dianhydrides", J. polym. Sci., Part A: Polym. Chem., 32, 1903 (1994).   DOI   ScienceOn
2 S. Itamara, M. Yamada, S. Tamura, T. Matsumoto, and T. Kurosaki, "Soluble polyimides with polyalicyclic structure. 1. Polyimides from bicyclo[2.2.2] oct-7-ene-2-exo,3-exo,5-exo,6-exo-tetracarboxylic 2,3:5,6-dianhydrides", Macromolecules, 26, 3490 (1993).   DOI   ScienceOn
3 M. Kusama, T. Matsumoto, and T. Kurosaki, "Soluble Polyimides with Polyalicyclic Structure.3. Polyimides from (4arH,8acH)-Decahydro-1t,4t:5c,8cdimethanonaphthalene- 2t,3t,6c,7c-tetracarboxylic 2,3:6,7-Dianhydride", Macromolecules, 27, 1117 (1994).   DOI   ScienceOn
4 K. Haraya and S. T. Hwang, "Permeation of oxygen, argon and nitrogen through polymer membranes", J. Membr. Sci., 71, 13 (1992).   DOI   ScienceOn
5 W. M. Lee, "Selection of barrier materials from molecular structure", Polym. Eng. sci., 20, 65 (1980).   DOI
6 J. A. Moor and D. R. Robello, "Curable, thermally stable poly(enaminonitriles)", Macromolecules, 22, 1084 (1989).   DOI   ScienceOn
7 K. Matsumoto and P. Xu, "Gas permeation properties of hexafluoro aromatic polyimides", J. Appl. Polym. Sci., 47, 1961 (1993).   DOI
8 M. R. Coleman and W. J. Koros, "Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications", J. Membr. Sci., 50, 285 (1990).   DOI   ScienceOn
9 H. Yamamoto, Y. Mi, S. A. Stern, and A. K. St. Clair, "Structure/permeability relationships of polyimide membranes. II", J. Polym. Sci., Part B: Polym. Phys., 28, 2291 (1990).   DOI
10 M. Mulder, "Basic Principles of Membrane Technology", Kluwer Academic Publisher, Dordrecht (1991).
11 W. S. W. Ho and K. K. Sirkar, "Membrane Handbook", Van Nostrand Reinhold, New York (1992).
12 D. Y. Oh and S. Y. Nam, "Developmental Trend of Polyimide Membranes for Gas Separation", Membrane Journal, 21, 307 (2011).
13 S. H. Hsiao, C. P. Yang, and C. K. Lin, "Syntheses and Properties of Polyimides based on Bis(paminophenoxy) biphenyls", J. Polym. Res., 2, 1 (1995).   DOI
14 J. N. Barsema, G. C. Kapantaidakis, N. F. A. van der Vegt, G. H. Koops, and M. Wessling, "Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide", J. Membr. Sci., 216, 195 (2003).   DOI   ScienceOn
15 J. J. Krol, M. Boerrigter, and G. H. Koops, "Polyimide hollow fiber gas separation membranes: preparation and the suppression of plasticization in propane/propylene environments", J. Membr. Sci., 184, 275 (2001).   DOI   ScienceOn
16 M. Yamada, M. Kusama, T. Matsumoto, and T. Kurosaki, "Soluble polyimides with polyalicyclic structure. 2. Polyimides from bicyclo[2.2.1]heptane- 2-exo-3-exo-5-exo-6-exo-tetracarboxylic 2,3:5,6-dianhydride", Macromolecules, 26, 4961 (1993).   DOI   ScienceOn
17 N. Ariga, Jpn. KoKai Tokkyo Koho 57-121035,13. 57-177050 (1982).
18 E. H. Kim. 2012. "Preparation of partiallyfluorinated polyarylene ether/soluble polyimidemembranes and their fuel cell/gas transportproeprties". Master Thesis, University of scienceand technology, Daejeon.
19 J. T. Chung, C. S. Lee, H. C. Koh, S. Y. Ha, S. Y. Nam, W. J. Jo, and Y. S. Baek, "Polymeric Membrane Modules for Substituting the $CO_{2}$ Absorption Column in the DME Plant Process", Membrane Journal, 22, 142 (2012).
20 H. B. Park and Y. M. Lee, "High Permeability, High Selectivity Carbon-Silica Membranes for Gas Separation", Membrane Journal, 12, 107 (2002).
21 K. Y. Chun, H. S. Kim, H. S. Han, and Y. I. Joe, "The preparation and the Gas Permeation Characteristics of the Soluble Polyimides", J. Korean Ind. Eng. Chem., 9, 306 (1998).
22 H. G. Im, J. H. Kim, H. S. Lee, and T. M. Kim, "Effect of Long Time Physical Aging on Ultra Thin 6FDA-Based Polyimide Films Containing Carboxyl Acid Group", Polymer(Korea), 31, 335 (2007).
23 J. H. Kim, S. B. Lee, and S. Y. Kim, "Incorporation Effects of Fluorinated Side Groups into Polyimide Membranes on Their Physical and Gas Permeation Properties", J. Appl. Polym. Sci., 77, 2756 (1999).
24 D. R. Paul and Y. Yampol'skii, "Polymeric Gas separation Membranes", CRC Press, London (1990).
25 R. E. Kesting and A. K. Fritzsche, "Polymeric Gas Separation Membranes", John Wiley & Sons., New York (1993).
26 S. A. Stern, "Polymers for gas separations: the next decade", J. Membr. Sci., 94, 1 (1994).   DOI   ScienceOn