Browse > Article
http://dx.doi.org/10.7316/khnes.2011.22.1.001

Stabilization of Covalently Cross-Linked SPEEK/Cs-Substituted HPA Composite Membranes for Water Electrolysis  

Jee, Bong-Chul (Department of Chemical Engineering, Myongji University)
Ha, Sung-In (Department of Chemistry, Myongji University)
Song, Min-Ah (Department of Chemistry, Myongji University)
Chung, Jang-Hoon (Department of Chemistry, Myongji University)
Moon, Sang-Bong (Elchem Tech Co., Ltd.)
Kang, An-Soo (Department of Chemical Engineering, Myongji University)
Publication Information
Abstract
To improve the mechanical properties, such as durabilities and antioxidative characteristics, the covalently cross-linked (CL-) SPEEK (sulfonated polyether ether ketone)/Cs-substituted HPA (heteropoly acid) organic-inorganic composite membranes (CL-SPEEK/Cs-HPAs), have been intensively investigated. The composite membrane were prepared by blending cesium-substituted HPAs (Cs-HPAs), including tungstophosphoric acid (TPA), molybdophosphoric acid (MoPA), and tungstosilicic acid (TSiA) with cross-linking agent content of 0.01 mL. And composite electrolytes composed of Cs-HPAs, prepared by immersion (imm.) and titration (titr.) methods to increase the stability of HPAs in water, were applied to polymer electrolyte membrane electrolysis (PEME). As a result, the proton conductivity of Cs-substituted composite membranes increased rapidly over $60^{\circ}C$ but mechanical properties, such as tensile strength, decreased in accordance with added Cs content. The bleeding-out of Cs-TPA membranes by titration method (50 vol.% Cs) decreased steadily to 2.15%. In the oxidative stability test by Fenton solution, the durability of membranes with Cs-HPA significantly increased. In case of CL-SPEEK/ Cs-TPA membrane, duration time increased more than 1200 hours. It is expected that even though CL-SPEEK/Cs-MoPA membrane shows the high proton conductivity, electrocatalytic activity and cell voltage of 1.80 V for water electrolysis, the CL-SPEEK/Cs-TPA (imm.) is more suitable as an alternative membrane in real system with the satisfactory proton conductivity, mechanical properties, anti-oxidative stability and cell voltage of 1.89 V.
Keywords
SPEEK; PEME; Covalently crosslinking; Cs-HPA; Oxidative stability; Bleeding out of HPA; Mechanical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Genova-Dimitrova, B. Baradie, D. Foscallo, C. Poinsignon and J. Y. Sanchez, "Ionomeric membranes for proton exchange membrane fuel cell(PEMFC): sulfonated polysulfone associated with phosphatoanimonic acid", J. Membr. Sci., Vol. 185, 2001, pp. 59-71.   DOI   ScienceOn
2 L. Li, J. Zhang and Y. Wang, "Sulfonated Poly (ether ether ketone) Membranes for Direct Methanol Fuel Cell", J. Membr. Sci., Vol. 226, 2003, pp. 159-167.   DOI
3 장두영, 장인영, 권오환, 김경언, 황갑진, 강안수, "함침-환원법으로 제조된 수전해용 Pt-SPE 전극촉매의 특성", 한국수소 및 신에너지학회 논문집, Vol. 17, No. 4, 2006, pp. 440-447.
4 S. L. Rhoden and C. A. Linkous, "The optimization of SPEEK membranes using Phos- PHotungstic acid as a dopant", ECS Trans., Vol. 16, No. 2, 2008, pp. 1461-1469.
5 V. Ramani, H. R. Kunz and J. M. Fenton, "Stabilized heteropolyacid/Nafion composite membranes for elevated temperature/low relative humidity PEFC operation", Electrochim. Acta, Vol. 50, No. 5, 2005, pp. 1181-1187.   DOI
6 S. Y. Oh, T. Yoshida, G. Kawamura, H. Muto, M. Sakai and A. Matsuda, "Proton conductivity and fuel cell property of composite electrolyte consisting of Cs-substituted heteropoly acids and sulfonated poly(ether-ether ketone)", J. Power Sources, Vol. 195, No. 18, 2010, pp. 5822-5828.   DOI   ScienceOn
7 황용구, "수전해용 SPEEK 전해질막의 제조시 HPA 첨가제의 영향", 박사학위논문. 명지대학교 대학원, 용인, 2008, pp. 48-50.
8 K. M. Lee, J. Y. Woo, B. C. Jee, Y. K. Hwang, C. H. Yun, J. H. Chung, S. B. Moon and A. S. Kang, "Effect of Cross-Linking Agent and Heteropolyacid (HPA) Contents on Physicochemical Characteristics of Covalently Cross-Linked Sulfonated Poly(Ether Ether Ketone)/HPAs Composite Membranes for Water Electrolysis", J. Ind. Eng. Chem., in press.
9 F. G. Helfferich, "Ion Exchange", MaGraw- Hill Book Co., New York, 1962.
10 N. Li, Z. Cui, S. Zhang, S. Li and F. Zhang, "Preparation and evaluation of a proton exchange membrane based on oxidation and water stable sulfonated polyimides", J. Power Sources, Vol. 172, 2007, pp. 511-519.   DOI   ScienceOn
11 I. Y. Jang, O. H. Kweon, K. E. Kim, G. J. Hwang, S. B. Moon, A. S. Kang, "Application of polysulfone (PSf)-and polyether ether ketone (PEEK)-tungstophosphoric acid (TPA) composite membranes for water electrolysis", J. Membr. Sci., Vol. 322, No. 1, 2008, pp. 154-161.   DOI   ScienceOn
12 S. Guhan and D. Sangeetha, "Evaluation of sulfonated poly(ether ether ketone) silicotungstic acid composite membranes for fuel cell applications", Int. J. Polym. Mater., Vol. 58, No. 2, 2009, pp. 87-98.
13 S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, and M. D. Guiver, "Proton Conducting Composite Membrane from Polyether ether ketone and Hetero-polyacids for Fuel Cell Applications", J. Membr. Sci., Vol. 173, No. 1, 2000, pp. 17-34.   DOI   ScienceOn
14 C. Arnold and R. A. Assink, "Structure-Property Relationships of Anionic Exchange Membranes for Fe/Cr Redox Storage Batteries", J. Appl. Polym. Sci., Vol. 29, No. 7, 1984, pp. 2317-2330.   DOI   ScienceOn
15 P. W. T. Lu and J. H. Russel, "Advances in Water Electrolysis Technology with Emphasis on Use of the Solid Polymer Electrolyte", J. Appl. Electrochem., Vol. 9, No. 3, 1979, pp. 269-283.   DOI   ScienceOn
16 Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath, "Fabrication and Characterization of Heteropolyacid/ Directly Polymerized Sulfonated Poly(arylene ether sulfone) Copolymer Composite Membranes for Higher Temperature Fuel Cell Applications", J. Membr. Sci., Vol. 212, 2003, pp. 263-282.   DOI
17 G. D. Yadav and N. S. Asthana, "Selective decomposition of cumene hydroperoxide into phenol and acetone by a novel cesium substituted heteropolyacid on clay", Appl. Catalysis A: General, Vol. 244, No. 2, 2003, pp. 341-357.   DOI   ScienceOn
18 Y. Zhang, H. Zhang, C. Bi and X. Zhu, "An inorganic/organic self-humidifying composite membranes for proton exchange membrane fuel cell application", Electrochim. Acta, Vol. 53, No. 12, 2008, pp. 4096-4103.   DOI   ScienceOn
19 H. Dogan, T. Y. Inan, E. Unveren and M. Kaya, "Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone(SPEEK) composite membranes for fuel cell applications", Int. J. Hydrogen Energy, Vol. 35, No. 15, 2010, pp. 7784-7795.   DOI   ScienceOn
20 P. Millet, F. Andolfatto and R. Durand, "Design and performance of a solid polymer electrolyte water electrolyzer", Int. J. Hydrogen Energy, Vol. 21, No. 2, 1996, pp. 87-93.
21 M. L. Ponce, "Organic-Inorganic hybrid membranes with heteropolyacids for DMFC applications", Ph. D. Dissertation, University of Hamburg, Hamburg, 2004.
22 N. Fujiwara, K. Yasuda, T. Ioroi, Z. Siroma and Y. Miyazaki, "Preparation of platinum- ruthenium onto solid polymer electrolyte membrane and the application to a DMFC anode", Electrochim. Acta, Vol. 47, 2002, pp. 4079-4084.   DOI   ScienceOn
23 I. Y. Jang, O. H. Kweon, K. E. Kim, G. J. Hwang, S. B. Moon, A. S. Kang, "Covalently cross-linked sulfonated poly(ether ether ketone)/ tungstophosphoric acid composite membranes for water electrolysis application", J. Power Sources, Vol. 181, No. 1, 2008, pp. 127-134.   DOI   ScienceOn
24 P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, and S. Kaliaguine, "Synthesis and Characterization of Sulfonated Poly(ether ether ketone) for Proton Exchange Membranes", J. Membr. Sci, Vol. 229, 2004, pp. 95-106.   DOI
25 S. Y. Oh, T. Yoshida, G. Kawamura, H. Muto, M. Sakai and A. Matsuda, "Composite electrolytes composed of Cs-substituted phosphotungstic acid and sulfonated poly(ether-ether ketone) for fuel cell systems", Mater. Sci. Eng. B, Vol. 173, 2010, pp. 260-266.   DOI