• 제목/요약/키워드: medical imaging system

Search Result 940, Processing Time 0.025 seconds

A Study on the Development and usefulness of the x/y Plane and z Axis Resolution Phantom for MDCT Detector (MDCT 검출기의 x/y plane과 z축 분해능 팬텀 개발 및 유용성에 관한 연구)

  • Kim, Yung-Kyoon;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 2022
  • The aim of this study is to establish a new QC method that can simultaneously evaluate the resolution of the x/y plane and the z-axis by producing a phantom that can reflect exposure and reconstruction parameter of MDCT system. It was used with Aquilion ONE(Cannon Medical System, Otawara, Japan), and the examination was scanned using of 120 kV, 260 mA, and the D-FOV of 300 mm2. It produced new SSP phantom modules in which two aluminum plates inclined at 45° to a vertical axis and a transverse axis to evaluate high contrast resolution of x/y plane and z axis. And it changed factors such as the algorithm, distance from gantry iso-center. All images were reconstructed in five steps from 0.6 mm to 10.0 mm slice thickness to measure resolution of x/y plane and z-axis. The image data measured FWHM and FWTM using Profile tool of Aquarius iNtusion Edition ver. 4.4.13 P6 software(Terarecon, California, USA), and analysed SPQI and signal intensity by ImageJ program(v1.53n, National Institutes of Health, USA). It decreased by 4.09~11.99%, 4.12~35.52%, and 4.70~37.64% in slice thickness of 2.5 mm, 5.0 mm, and 10.0 mm for evaluating the high contrast resolution of x/y plane according to distance from gantry iso-center. Therefore, the high contrast resolution of the x/y plane decreased when the distance from the iso-center increased or the slice thickness increased. Additionally, the slice thicknesses of 2.5 mm, 5.0 mm, and 10.0 mm with a high algorithm increased 74.83, 15.18 and 81.25%. The FWHM was almost constant on the measured SSP graph for evaluating the accuracy of slice thickness which represents the resolution of x/y plane and z-axis, but it was measured to be higher than the nominal slice thickness set by user. The FWHM and FWTM of z-axis with axial scan mode tended to increase significantly as the distance increased from gantry iso-center than the helical mode. Particularly, the thinner slice thickness that increased error range compare with the nominal slice thickness. The SPQI increased with thick slice thickness, and that was closer to 90% in the helical scan than the axial scan. In conclusion, by producing a phantom suitable for MDCT detectors and capable of quantitative resolution evaluation, it can be used as a specific method in the management of research quality and management of outdated equipment. Thus, it is expected to contribute greatly to the discrimination of lesions in the field of CT imaging.

Evaluate the implementation of Volumetric Modulated Arc Therapy QA in the radiation therapy treatment according to Various factors by using the Portal Dosimetry (용적변조회전 방사선치료에서 Portal Dosimetry를 이용한 선량평가의 재현성 분석)

  • Kim, Se Hyeon;Bae, Sun Myung;Seo, Dong Rin;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • Purpose : The pre-treatment QA using Portal dosimetry for Volumetric Arc Therapy To analyze whether maintaining the reproducibility depending on various factors. Materials and Methods : Test was used for TrueBeam STx$^{TM}$ (Ver.1.5, Varian, USA). Varian Eclipse Treatment planning system(TPS) was used for planning with total of seven patients include head and neck cancer, lung cancer, prostate cancer, and cervical cancer was established for a Portal dosimetry QA plan. In order to measure these plans, Portal Dosimetry application (Ver.10) (Varian) and Portal Vision aS1000 Imager was used. Each Points of QA was determined by dividing, before and after morning treatment, and the after afternoon treatment ended (after 4 hours). Calibration of EPID(Dark field correction, Flood field correction, Dose normalization) was implemented before Every QA measure points. MLC initialize was implemented after each QA points and QA was retried. Also before QA measurements, Beam Ouput at the each of QA points was measured using the Water Phantom and Ionization chamber(IBA dosimetry, Germany). Results : The mean values of the Gamma pass rate(GPR, 3%, 3mm) for every patients between morning, afternoon and evening was 97.3%, 96.1%, 95.4% and the patient's showing maximum difference was 95.7%, 94.2% 93.7%. The mean value of GPR before and after EPID calibration were 95.94%, 96.01%. The mean value of Beam Output were 100.45%, 100.46%, 100.59% at each QA points. The mean value of GPR before and after MLC initialization were 95.83%, 96.40%. Conclusion : Maintain the reproducibility of the Portal Dosimetry as a VMAT QA tool required management of the various factors that can affect the dosimetry.

  • PDF

Polarization-sensitive Optical Coherence Tomography Imaging of Pleural Reaction Caused by Talc in an ex vivo Rabbit Model (생체 외 토끼 모델에서의 탈크에 의해 유발되는 흉막 반응의 편광 민감 광 결맞음 단층촬영 이미징)

  • Park, Jung-Eun;Xin, Zhou;Oak, Chulho;Kim, Sungwon;Lee, Haeyoung;Park, Eun-Kee;Jung, Minjung;Kwon, Daa Young;Tang, Shuo;Ahn, Yeh-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The chest wall, an organ directly affected by environmental particles through respiration, consists of ribs, a pleural layer and intercostal muscles. To diagnose early and treat disease in this body part, it is important to visualize the details of the chest wall, but the structure of the pleural layer cannot be seen by chest computed tomography or ultrasound. On the other hand, optical coherence tomography (OCT), with a high spatial resolution, is suited to observe pleural-layer response to talc, one of the fine materials. However, intensity-based OCT is weak in providing information to distinguish the detailed structure of the chest wall, and cannot distinguish the reaction of the pleural layer from the change in the muscle by the talc. Polarization-sensitive OCT (PS-OCT) takes advantage of the fact that specific tissues like muscle, which have optical birefringence, change the backscattered light's polarization state. Moreover, the birefringence of muscle associated with the arrangement of myofilaments indicates the muscle's condition, by measuring retardation change. The PS-OCT image is interpreted from three major perspectives for talc-exposure chest-wall imaging: a thickened pleural layer, a separation between pleural layer and muscle, and a phase-retardation measurement around lesions. In this paper, a rabbit chest wall after talc pleurodesis is investigated by PS-OCT. The PS-OCT images visualize the pleural layer and muscle, respectively, and this system shows different birefringence of normal and damaged lesions. Also, an analyisis based on phase-retardation slope supports results from the PS-OCT image and histology.

Evaluation of HalcyonTM Fast kV CBCT effectiveness in radiation therapy in cervical cancer patients of childbearing age who performed ovarian transposition (난소전위술을 시행한 가임기 여성의 자궁경부암 방사선치료 시 난소선량 감소를 위한 HalcyonTM Fast kV CBCT의 유용성 평가 : Phantom study)

  • Lee Sung Jae;Shin Chung Hun;Choi So Young;Lee Dong Hyeong;Yoo Soon Mi;Song Heung Gwon;Yoon In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.73-82
    • /
    • 2022
  • Purpose: The purpose of this study is to evaluate the effectiveness of reducing the absorbed dose to the ovaries and the quality of the CBCT image when using the HalcyonTM Fast kV CBCT of cervical cancer patients of child-bearing age who performed ovarian transposition Materials and Methods : Contouring of the cervix and ovaries required for measurement was performed on the computed tomography images of the human phantom (Alderson Rando Phantom, USA), and three Optically Stimulated Luminescence Dosimeter(OSLD) were attached to the selected organ cross-section, respectively. In order to measure the absorbed dose to the cervix and ovaries in the TruebeamTM pelvis mode (Hereinafter referred to as TP), The HalcyonTM Pelvis mode (Hereinafter referred to as HP) and The HalcyonTM Pelvis Fast mode (Hereinafter referred to as HPF), An image was taken with a scan range of 17.5 cm and also taken an image that reduced the Scan range to 12.5cm. A total of 10 cumulative doses were summed, It was replaced with a value of 23 Fx, the number of cervical cancer treatments, and compared In additon, uniformity, low contrast visibility, spatial resolution, and geometric distortion were compared and analyzed using Catphan 504 phantom to compare CBCT image quality between equipment. Each factor was repeatedly measured three times, and the average value was obtained by analysing with the Doselab (Mobius Medical Systems, LP. Versions: 6.8) program. Results: As a result of measuring absorbed dose by CBCT with OSLD, TP and HP did not obtain significant results under the same conditions. The mode showing the greatest reduction value was HPF versus TP. In HPF, the absorbed dose was reduced by 39.8% in the cervix and 19.8% in the ovary compared to the TP in the scan range of 17.5 cm. the scan range was reduced to 12.5 cm, absorbed dose was reduced by 34.2% in the cervix and 50.5% in the ovary. In addition, result of evaluating the quality of the image used in the above experiment, it complied with the equipment manufacturer's standards with Geometric Distortion within 1mm (SBRT standard), Uniformity HU, LCV within 2.0%, Spatial Resolution more than 3 lp/mm. Conclusion: According to the results of this experiment, HalcyonTM can select more various conditions than TruebeamTM in treatment of fertility woman who have undergone ovarian Transposition , because it is important to reduce the radiation dose by CBCT during radiation therapy. So finally we recommend HalcyonTM Fast kV CBCT which maintains image quality even at low mAs. However, it is consider that the additional exposure to low doses can be reduced by controlling the imaging range for patients who have undergone ovarian transposition in other treatment machines.

Computer Assisted EPID Analysis of Breast Intrafractional and Interfractional Positioning Error (유방암 방사선치료에 있어 치료도중 및 분할치료 간 위치오차에 대한 전자포탈영상의 컴퓨터를 이용한 자동 분석)

  • Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.

  • PDF

Analysis of Respiratory Motion Artifacts in PET Imaging Using Respiratory Gated PET Combined with 4D-CT (4D-CT와 결합한 호흡게이트 PET을 이용한 PET영상의 호흡 인공산물 분석)

  • Cho, Byung-Chul;Park, Sung-Ho;Park, Hee-Chul;Bae, Hoon-Sik;Hwang, Hee-Sung;Shin, Hee-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Purpose: Reduction of respiratory motion artifacts in PET images was studied using respiratory-gated PET (RGPET) with moving phantom. Especially a method of generating simulated helical CT images from 4D-CT datasets was developed and applied to a respiratory specific RGPET images for more accurate attenuation correction. Materials and Methods: Using a motion phantom with periodicity of 6 seconds and linear motion amplitude of 26 mm, PET/CT (Discovery ST: GEMS) scans with and without respiratory gating were obtained for one syringe and two vials with each volume of 3, 10, and 30 ml respectively. RPM (Real-Time Position Management, Varian) was used for tracking motion during PET/CT scanning. Ten datasets of RGPET and 4D-CT corresponding to every 10% phase intervals were acquired. from the positions, sizes, and uptake values of each subject on the resultant phase specific PET and CT datasets, the correlations between motion artifacts in PET and CT images and the size of motion relative to the size of subject were analyzed. Results: The center positions of three vials in RGPET and 4D-CT agree well with the actual position within the estimated error. However, volumes of subjects in non-gated PET images increase proportional to relative motion size and were overestimated as much as 250% when the motion amplitude was increased two times larger than the size of the subject. On the contrary, the corresponding maximal uptake value was reduced to about 50%. Conclusion: RGPET is demonstrated to remove respiratory motion artifacts in PET imaging, and moreover, more precise image fusion and more accurate attenuation correction is possible by combining with 4D-CT.

Comparison of using CBCT with CT Simulator for Radiation dose of Treatment Planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Kim, Dae-Young;Choi, Ji-Won;Cho, Jung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.742-749
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

Texture Feature analysis using Computed Tomography Imaging in Fatty Liver Disease Patients (Fatty Liver 환자의 컴퓨터단층촬영 영상을 이용한 질감특징분석)

  • Park, Hyong-Hu;Park, Ji-Koon;Choi, Il-Hong;Kang, Sang-Sik;Noh, Si-Cheol;Jung, Bong-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • In this study we proposed a texture feature analysis algorithm that distinguishes between a normal image and a diseased image using CT images of some fatty liver patients, and generates both Eigen images and test images which can be applied to the proposed computer aided diagnosis system in order to perform a quantitative analysis for 6 parameters. And through the analysis, we derived and evaluated the recognition rate of CT images of fatty liver. As the results of examining over 30 example CT images of fatty liver, the recognition rates representing a specific texture feature-value are as follows: some appeared to be as high as 100% including Average Gray Level, Entropy 96.67%, Skewness 93.33%, and Smoothness while others showed a little low disease recognition rate: 83.33% for Uniformity 86.67% and for Average Contrast 80%. Consequently, based on this research result, if a software that enables a computer aided diagnosis system for medical images is developed, it will lead to the availability for the automatic detection of a diseased spot in CT images of fatty liver and quantitative analysis. And they can be used as computer aided diagnosis data, resulting in the increased accuracy and the shortened time in the stage of final reading.

Clinicopathologic Characteristics of Incidentally Discovered Thyroid Carcinomas (갑상선 우연암종의 임상병리적 특성)

  • Chung Woung-Youn;Cheong Jae-Ho;Chang Hang-Seok;Park Cheong-Soo
    • Korean Journal of Head & Neck Oncology
    • /
    • v.16 no.1
    • /
    • pp.64-68
    • /
    • 2000
  • Objectives: With the recent advances and increasing use of imaging techniques in examination of the neck, the incidence of incidentally discovered thyroid carcinoma has been increasing. This study was carried out to evaluate the clinicopathologic characteristics of incidental thyroid carcinomas and to find optimal therapeutic strategies for these lesions. Materials & Methods: From Jan. 1988 to Aug. 1998, 1,053 patients were operated on for thyroid cancer, of whom 127(12.1%) had incidentally discovered thyroid cancers which were identified during routine health checkups(n=40), diagnostic procedures for unrelated medical conditions(n=39) and mass screening for thyroid cancer(n=48). The preoperative diagnosis was obtained by ultrasound-guided FNAB and the extent of surgery was determined based on frozen section examinations, as well as prognostic factors and gross findings at the time of surgery. Results: There were 6 men and 121 women with a mean age of 45.9 years. Histopathological diagnosis included papillary carcinomas(n=1l9), follicular carcinomas(n=6), poorly differentiated carcinoma(n=l) and medullary carcinoma(n=1). Thirty patients(23.6%) had multifocallesions. The mean diameter of the tumors was 1.1 cm(0.2-3.4 cm). Capsular invasions were found in 53 patients(41.7%) and nodal metastases in 41(32.3%). The surgical procedures used were: 90 less-than total thyroidectomies and 37 total thyroidectomies with central neck node dissection. Lateral neck dissection was added in 5 patients. According to TNM staging, 79 patients(63.2%) were at stage I, 15(12.0%) at stage II, 31(24.8%) at stage III and 0(0.0%) at stage IV. By AMES scoring system, 102 patients(81.6%) were in the low-risk group and 23(18.4%) in the high-risk group. And by MACIS scoring system, 103(86.6%) of 119 papillary thyroid cancer patients were less than 6. Conclusions: The clinicopathological characteristics of incidentally discovered thyroid carcinomas are similar to ordinary thyroid carcinomas. The treatment of choice should be individualized based on the particular clinical situation encountered, as in ordinary thyroid carcinomas.

  • PDF

Establishment of Quality Control System for Angiographic Unit (IVR장치의 성능 평가 기준 개발)

  • Kang, Byung-Sam;Son, Jin-Hyun;Kim, Seung-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.236-244
    • /
    • 2011
  • Recently, the number of interventional procedures has increased dramatically as an alternative of invasive surgical procedure. The need for the quality control program of the angiographic units has also increased, because of concerns about the increased patient dose and the importance of image quality of angiographic units for the successful procedures. The purpose of this study was to propose an optimal guideline for the quality control program of the angiographic units. We reviewed domestic and international standards about medical imaging system and we evaluated the quality of 61 angiographic units in Korea with the use of NEMA 21 phantom. According to the results of our study, we propose a guideline for the quality control program of the angiographic units. Quality control program includes tube voltage test, tube current test, HVL test, image-field geometry test, spatial resolution test, low-contrast iodine detectability test, wire resolution test, phantom entrance dose test. Proposed reference levels are as follows: PAE < $\pm$ 10% in tube voltage test, PAE < $\pm$ 15% in tube current test, minimum 2.3 mmAl at 80 kVp in HVL test, minimum 'acceptable' level at image-field geometry test, 0.8 lp/mm for detector size of 34-40cm, 1.0 lp/mm for detector size of 28-33cm, 1.2 lp/mm for detector size of 22-27cm in spatial resolution test, minimum 200mg/cc in low contrast iodine detectability test, phantom entrance dose should be under 10R/min, 0.012 inch wire should be seen at static wire resolution test, and 0.022 inch wire should be seen at moving wire resolution test.