Analysis of Respiratory Motion Artifacts in PET Imaging Using Respiratory Gated PET Combined with 4D-CT

4D-CT와 결합한 호흡게이트 PET을 이용한 PET영상의 호흡 인공산물 분석

  • Cho, Byung-Chul (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Park, Sung-Ho (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Park, Hee-Chul (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Bae, Hoon-Sik (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Hwang, Hee-Sung (Division of Nuclear Medicine, Department of Radiology, Hallym University College of Medicine) ;
  • Shin, Hee-Soon (GE Healthcare)
  • 조병철 (한림대학교 의과대학 방사선종양학교실) ;
  • 박성호 (한림대학교 의과대학 방사선종양학교실) ;
  • 박희철 (한림대학교 의과대학 방사선종양학교실) ;
  • 배훈식 (한림대학교 의과대학 방사선종양학교실) ;
  • 황희성 (한림대학교 의과대학 진단방사선과교실) ;
  • 신희순
  • Published : 2005.06.30

Abstract

Purpose: Reduction of respiratory motion artifacts in PET images was studied using respiratory-gated PET (RGPET) with moving phantom. Especially a method of generating simulated helical CT images from 4D-CT datasets was developed and applied to a respiratory specific RGPET images for more accurate attenuation correction. Materials and Methods: Using a motion phantom with periodicity of 6 seconds and linear motion amplitude of 26 mm, PET/CT (Discovery ST: GEMS) scans with and without respiratory gating were obtained for one syringe and two vials with each volume of 3, 10, and 30 ml respectively. RPM (Real-Time Position Management, Varian) was used for tracking motion during PET/CT scanning. Ten datasets of RGPET and 4D-CT corresponding to every 10% phase intervals were acquired. from the positions, sizes, and uptake values of each subject on the resultant phase specific PET and CT datasets, the correlations between motion artifacts in PET and CT images and the size of motion relative to the size of subject were analyzed. Results: The center positions of three vials in RGPET and 4D-CT agree well with the actual position within the estimated error. However, volumes of subjects in non-gated PET images increase proportional to relative motion size and were overestimated as much as 250% when the motion amplitude was increased two times larger than the size of the subject. On the contrary, the corresponding maximal uptake value was reduced to about 50%. Conclusion: RGPET is demonstrated to remove respiratory motion artifacts in PET imaging, and moreover, more precise image fusion and more accurate attenuation correction is possible by combining with 4D-CT.

목적: 호흡게이트PET(이하 RGPET)을 이용하여 호흡에 의한 PET영상의 인공산물의 감소 효과를 호흡모형 팬톰을 제작하여 분석하였다. 특히 4D-CT를 시행하여 얻은 동일 호흡위상의 CT영상을 이용하여 RGPET의 감쇠 보정에 이용할 수 있도록 CT영상을 재구성하는 방법을 제시하였다. 대상 및 방법: 반복주기 6초, 진동 폭 26mm의 운동 팬톰에 각각 3 ml syringe와 10, 30 ml의 vial에 18.5 MBq (0.5 mCi) 18-F FDG를 주입한 후, 게이트의 유무에 따라 Discovery ST (GE Medical System, Milwaukee. WU) PET-CT 스캐너를 사용하여 PET/CT스캔을 시행하였다. 이때 호흡추적장치로는 적외선 CCD카메라 방식의 Real-Time Position Management (Varian Medical Systems, Palo Alto, CA)을 사용하였다. 호흡게이트PET 및 4D-CT스캔은 10% 호흡위상백분위 별로 총 10세트의 영상을 각각 획득하였다. 이와 같이 운동주기를 10개의 소 구간으로 분할하여 얻은 PET과 CT영상으로부터 각 물체의 위치를 분석하였고, 물체의 크기에 따른 운동 인공산물의 크기와 PET 계수 값의 감소간의 상관관계를 분석하였다. 결과: RGPET과 4D-CT상에서 물체의 중심위치를 호흡위상별로 분석한 결과, 오차범위 내에서 실제 위치와 잘 일치하였다. 게이트를 시행하지 않은 PET에서 관측된 물체의 크기는 상대적 운동크기에 비례하여 증가하여, 운동범위가 물체 크기의 2배가 되면 부피를 2.5배 가량 과대 평가하였다. 반면, 최대 uptake수치는 50% 가량 줄었다. 결론: RGPET을 통해 PET영상에서 나타나는 호흡으로 인한 인공산물의 대부분을 제거할 수 있음을 확인할 수 있었으며, 4D-CT스캔을 통해 획득한 동일위상의 CT 영상을 이용하여 보다 정확한 감쇠 보정 및 영상융합 결과를 얻었다.

Keywords

References

  1. Mah D, Hanley J, Rosenzweig KE, Yorke E, Braban L, Ling CC, et al. Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys 2000;48:175-85
  2. Hanley D, Debois MM, Mah D, Mageras GS, Raben A, Rosenzweg K, et al. Deep inspiration breath-hold technique for lung tumors: The potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys 2000;45: 603-11
  3. Wong JW, Sharpe MB, Jaffray DA, Kini VR, Robertson JM, Stromberg JS, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 1999;44:911-9 https://doi.org/10.1016/S0360-3016(99)00056-5
  4. Dawson LA, Brock KK, Kazanjian S, Fitch D, McGinn CJ, Lawrence TS, et al. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy Int J Radiat Oncol Biol Phys 2001;51:1410-21 https://doi.org/10.1016/S0360-3016(01)02653-0
  5. Kubo HD, Hill BC. Respiration gated radiotherapy treatment: A technical study. Phys Med Biol 1996;41:83-91 https://doi.org/10.1088/0031-9155/41/1/007
  6. Mageras GS, Yorke E, Rosenzweig KE, Braban L, Keatley E, Ford E, et al. Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system. J Appl Clin Med Phys 2001;2:191-200 https://doi.org/10.1120/1.1409235
  7. Ford E, Mageras GS, Yorke E, Rosenzweig KE, Wagman R, Ling CC. Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging. Int J Radiat Oncol Biol Phys 2002;52:522-31 https://doi.org/10.1016/S0360-3016(01)02681-5
  8. Wagman R, Yorke E, Giraud P, Ford E, Sidhu K, Mageras GS et al. Reproducibility of organ position with respiratory gating for liver tumors: Use in dose-escalation. Int J Radiat Oncol Biol Phys 2003;55:659-68 https://doi.org/10.1016/S0360-3016(02)03941-X
  9. Vedam SS, Kini VR, Keall PJ, Ramakrishnan V, Mostafavi H, Mohan R. Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. Med Phys 2003;30:505-13 https://doi.org/10.1118/1.1558675
  10. Ford E, Mageras GS, Yorke E, Ling CC. Respiration correlated spiral CT: A method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med Phys 2003;30:88-97 https://doi.org/10.1118/1.1531177
  11. Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol 2003;48:45-62 https://doi.org/10.1088/0031-9155/48/1/304
  12. Pan T, Lee TY, Rietzel E, Chen GTY. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys 2004;31:333-40 https://doi.org/10.1118/1.1639993
  13. Nehmeh SA, Erdi YE, Rosenzweig KE, Schoder H, Larson SM, Squire OD, et al. Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated dynamic PET: Methodology and comparison with respiratory gated PET. J Nucl Med 2003;44:1644-8
  14. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 2002;43:876-81
  15. Boucher L, Rodrigue S, Lecomte R, Benard F. Respiratory gating for 3-dimensional PET of the thorax: Feasibility and initial results. J Nucl Med 2004;45:214-9
  16. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Squire OD, Braban LE, et al. Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 2002;29:366-71 https://doi.org/10.1118/1.1448824
  17. Osmann MM, Cohade C, Nakamoto Y, Marshal LT, Leal JP, Wahl RI. Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 2003;44:240-3
  18. Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004;31:3179-86 https://doi.org/10.1118/1.1809778