• Title/Summary/Keyword: medical image data

Search Result 1,020, Processing Time 0.024 seconds

Evaluation of Magnetization Transfer Ratio Imaging by Phase Sensitive Method in Knee Joint (슬관절 부위에서 자화전이 위상감도법에 의한 자화전이율 영상 평가)

  • Yoon, Moon-Hyun;Seung, Mi-Sook;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.269-275
    • /
    • 2008
  • Although MR imaging is generally applicable to depict knee joint deterioration it, is sometimes occurred to mis-read and mis-diagnose the common knee joint diseases. In this study, we employed magnetization transfer ratio (MTR) method to improve the diagnosis of the various knee joint diseases. Spin-echo (SE) T2-weighted images (TR/TE 3,400-3,500/90-100 ms) were obtained in seven cases of knee joint deterioration, FSE T2-weighted images (TR/TE 4,500-5,000/100-108 ms) were obtained in seven cases of knee joint deterioration, gradient-echo (GRE) T2-weighted images (TR/TE 9/4.56/$50^{\circ}$ flip angle, NEX 1) were obtained in 3 cases of knee joint deterioration, In six cases of knee joint deterioration, fat suppression was performed using a T2-weighted short T1/tau inverse recovery (STIR) sequence (TR/TE =2,894-3,215 ms/70 ms, NEX 3, ETL 9). Calculation of MTR for individual pixels was performed on registration of unsaturated and saturated images. After processing to make MTR images, the images were displayed in gray color. For improving diagnosis, three-dimensional isotropic volume images, the MR tristimulus color mapping and the MTR map was employed. MTR images showed diagnostic images quality to assess the patients' pathologies. The intensity difference between MTR images and conventional MRI was seen on the color bar. The profile graph on MTR imaging effect showed a quantitative measure of the relative decrease in signal intensity due to the MT pulse. To diagnose the pathologies of the knee joint, the profile graph data was shown on the image as a small cross. The present study indicated that MTR images in the knee joint were feasible. Investigation of physical change on MTR imaging enables to provide us more insight in the physical and technical basis of MTR imaging. MTR images could be useful for rapid assessment of diseases that we examine unambiguous contrast in MT images of knee disorder patients.

  • PDF

Comparison of Radiation Dose in the Measurement of MDCT Radiation Dose according to Correction of Temperatures and Pressure, and Calibration of Ionization Chamber (MDCT 선량측정에서 온도와 압력에 따른 보정과 Ionization Chamber의 Calibration 전후 선량의 비교평가)

  • Lee, Chang-Lae;Kim, Hee-Joung;Jeon, Seong-Su;Cho, Hyo-Min;Nam, So-Ra;Jung, Ji-Young;Lee, Young-Jin;Lee, Seung-Jae;Dong, Kyung-Rae
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • This study aims to conduct the comparative analysis of the radiation dose according to before and after the calibration of the ionization chamber used for measuring radiation dose in the MDCT, as well as of $CTDI_w$ according to temperature and pressure correction factors in the CT room. A comparative analysis was conducted based on the measured MDCT (GE light speed plus 4 slice, USA) data using head and body CT dosimetric phantom, and Model 2026C electrometer (RADICAL 2026C, USA) calibrated on March 21, 2007. As a result, the $CTDI_w$ value which reflected calibration factors, as well as correction factors of temperature and pressure, was found to be the range of $0.479{\sim}3.162mGy$ in effective radiation dose than the uncorrected values. Also, under the routine abdomen routine CT image acquisition conditions used in reference hospitals, patient effective dose was measured to indicate the difference of the maximum of 0.7 mSv between before and after the application of such factors. These results imply that the calibration of the ion chamber, and the correction of temperature and pressure of the CT room are crucial in measuring and calculating patient effective dose. Thus, to measure patient radiation dose accurately, the detailed information should be made available regarding not only the temperature and pressure of the CT room, but also the humidity and recombination factor, characteristics of X-ray beam quality, exposure conditions, scan region, and so forth.

  • PDF

Development of a Method to Measure the Radiation Isocenter Size of Linear Accelerators and Quantitative Analysis of the Radiation Isocenter Size for Clinac 21EX Linear Accelerator (선형가속기 방사선 중심점의 크기 측정 방법 개발과 Clinac 21EX 선형가속기의 방사선 중심점 크기 분석)

  • Jeon, Ho-Sang;Nam, Ji-Ho;Park, Dahl;Kim, Yong-Ho;Kim, Won-Taek;Kim, Dong-Won;Ki, Yong-Kan;Kim, Dong-Hyun
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.131-139
    • /
    • 2011
  • A method to get a size of the radiation isocenter of linear accelerators using star-shot images was presented and a computer program was developed to automate the method. Accuracy of the method was verified. The developed program was used to measure sizes of the radiation isocenters for a Clinac 21EX (Varian, USA) using data of quality assurance (QA) performed from June 2008 to December 2010. To calculated the size of radiation isocenter, positions of two points on each central ray of the star-shot image were found and the equation of the central ray was determined using the positions of two points. Using the equations of central rays the radius of the minimum circle intersecting all the central rays, which is one half of the size of radiation isocenter, was calculated. The program measured x-intercepts and y-intercepts of the central rays within errors of 0.084 mm and sizes of radiation isocenters within 0.053 mm. All the errors were less than the spatial resolution of star-shot images 0.085 mm. The radiation isocenter sizes of Clinac 21EX were $0.33{\pm}0.27mm$, $0.71{\pm}0.36mm$, $0.50{\pm}0.16mm$ for collimator, gantry and couch respectively. During the measurement period all the measured sizes were less than 2.0 mm and within tolerance. The developed program could calculate the size of radiation isocenters and it would be helpful to routine QA.

Comparison of using CBCT with CT Simulator for Radiation dose of Treatment Planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Kim, Dae-Young;Choi, Ji-Won;Cho, Jung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.742-749
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

Analysis of $^1H$ MR Spectroscopy of parietal white matter material Phantom (두정부 백질 물질을 이용한 수소 자기 공명 분광 분석)

  • Lee, Jae-Yeong;Lim, Cheong-Hwan;Kim, Myeong-Soo
    • Journal of radiological science and technology
    • /
    • v.26 no.2
    • /
    • pp.57-61
    • /
    • 2003
  • The purpose of this study is to compare both 1.5T and 4.7T in Praietal White matter material Phantom using the same methodology at both field strengths. Data at both field strengths are compared in terms of $T_2$ relaxation times, line widths and SNRs MR imaging and $^1H$ MR spectroscopy were performed on GE 1.5T SIGNA system and Broker Biospec 4.7T/30 MRI/MRS system. After phantom axial scan $^1H$ MRS was obtained from T2 weighted image by 3-dimensional localization technique(PRESS : Point RE solved spectroscopy Sequence) this phantom is composed of an aqueous solution 36.7 mmol/L of NAA, 25.0 mmol/L of Cr, 6.3 mmol/L of choline chloride, 30.0 mmol/L or Glu, and 22.5 mmol/L of MI(adjusted to a pH of 7,15 in a phosphate buffet). Data processed using software developed inhouse. At 1.5T, T2 relaxation times for Cho, Cr, and NAA were $0.41{\pm}0.07,\;0.26{\pm}0.04,\;0.46{\pm}0.07$ while at 4.7T they were $0.17{\pm}0.03,\;0.14{\pm}0.05,\;0.20{\pm}0.03$ respectively. At 1.5T, line widths for water, Cho, Cr and NAA were $2.9{\pm}0.7,\;1.6{\pm}0.7,\;1.7{\pm}0.8,\;2.2{\pm}0.02Hz$ while at 4.7T they were $5.2{\pm}1.1,\;4.6{\pm}1.9,\;4.01{\pm}1.8,\;4.8{\pm}1.9Hz$ respectively. It can be seen that $T_2$ relaxation times were significantly shorter at 4.7 compared to 1.5T and that the line widths were also broader. The average SNRs for NAA for subjects at short and long TEs were $23.5{\pm}11.3$ at TE=20 msec ; $15.4{\pm}7.7$ at TE=272 msec at 1.5T and $40{\pm}8.3$ and $17{\pm}3.5$ respectively at 4.7T higher field strength is superior because of improved sensitivity and chemical shift dispersion. However these improvements are partially offset by increased line widths and decrease $T_2$ relaxation times, which act to reduce both sensitivity and resolution. In our experiments with the equipment available to us, 4.7T proton spectra at short TEs exhibit moderately improved sensitivity compared to 1.5T.

  • PDF

A Study on the Awareness of Dental Patients about Dental Hygienists (치과내원환자의 치과위생사에 대한 인식도 조사 연구)

  • Park, Sung-Suk;Choo, Pyung-Ku
    • Journal of dental hygiene science
    • /
    • v.10 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • The purpose of this study was to examine the awareness of dental patients using dental institutions about dental hygienists in an effort to help educate dental hygiene students to have the right image of dental hygienists. And it's also meant to provide education for dental hygienists to develop their own capabilities, attitude and values to render quality medical services to patients. The subjects in this study were the patients who visited dental clinics and hospitals to receive treatment. A self- administered survey was conducted from March 5 to April 13, 2010, in consideration of their general characteristics. The answer sheets from 204 respondents were gathered, and 197 answer sheets were analyzed except seven incomplete ones. A factor analysis was carried out to find out their general characteristics, and independent-samples t-test and one-way ANOVA were utilized to get statistical data on mean and standard deviation. A SPSS 12.0 program was employed to analyze all the collected data. And it's found that the largest number of the patients thought that the main duty of dental hygienists was to give treatment to patients, and they took a favorable view of their services. They weren't well aware of the process of nurturing dental hygienists and their curriculum, and they put a relatively strong confidence in their treatment and had relatively favorable experiences with them.

Uncanny Valley Effect in the Animation Character Design - focusing on Avoiding or Utilizing the Uncanny Valley Effect (애니메이션 캐릭터 디자인에서의 언캐니 밸리 효과 연구 - 언캐니 밸리(uncanny valley)의 회피와 이용을 중심으로)

  • Ding, LI;Moon, Hyoun-Sun
    • Cartoon and Animation Studies
    • /
    • s.43
    • /
    • pp.321-342
    • /
    • 2016
  • The "uncanny valley" curve describes the measured results of the negative emotion response which depends on the similarity between the artificially created character and the real human shape. The "uncanny valley" effect that usually appears in the animation character design induces negative response such as fear and hatred feeling, and anxiety, which is not expected by designers. Especially, in the case of the commercial animation which mostly reply on public response, this kind of negative response is directly related to the failure of artificially created character. Accordingly, designers adjust the desirability of the character design by avoiding or utilizing the "uncanny valley" effect, inducing certain character effect that leads to the success in animation work. This manuscript confirmed the "uncanny valley" coefficient of the positive emotion character design which was based on the actual character design and animation analysis. The "uncanny valley" concept was firstly introduced by a medical scientist Ernst Jentsch in 1906. After then, a psychologist Freud applied this concept to psychological phenomenon in 1919 and a Japanese robert expert Professor Masahiro Mori presented the "uncanny valley" theory on the view of the recognition effect. This paper interpreted the "uncanny valley" effect based on these research theory outcomes in two aspects including sensation production and emotion expression. The mickey-mouse character design analysis confirmed the existence basis of the "uncanny valley" effect, which presented how mickey-mouse human shape image imposed the "uncanny valley" effect on audience. The animation work analysis investigated the reason why the produced 3D animation character should not be 100% similar to the real human by comparing the animation baby character produced by Pix company as the experimental subject to the data of the real baby with the same age. Therefore, the examples of avoiding or utilizing the "uncanny valley" effect in animation character design was discussed in detail and the four stages of sensation production and emotional change of audience due to this kind of effect was figured out. This research result can be used as an important reference in deciding the desirability of the animation character.

Analysis of $^{99m}Tc-ECD$ Brain SPECT images in Boys and Girls ADHD using Statistical Parametric Mapping(SPM) (통계적 파라미터지도 작성법(SPM)을 이용한 남여별 ADHD환자의 뇌 SPECT 영상비교분석)

  • Park, Soung-Ock;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.27 no.3
    • /
    • pp.31-41
    • /
    • 2004
  • Attention deficit hyperactivity disorder(ADHD)is one of the most common psychiatric disorders in childhood, especially school age children and persisting into adult. ADHD is affected 7.6% in our children, Korea. and persisting into $15{\sim}20%$ in adult. And it is characterized by hyperactivity, inattention and impulsivity. Brain imaging is one of way to diagnosis for ADHD. Brain imaging studies may be provide information two types - structural and functional imaging. Structural and functional images of the brain play an important role in management of neurologic and psyciatric disorders. Brain SPECT, with perfusion imaging radiopharmaceuticals is one of the appropriate test to diagnosis of neurologic and psychiatric diseases. Ther are a few studies about separated analysis between boys and girls ADHD SPECT brain images. Selection of Probability level(P-value) is very important to determind the abnormalities when analysis a data by SPM. SPM is a statistical method used for image analysis and determine statistical different between two groups-normal and ADHD. Commonly used P-value is P<0.05 in statistical analysis. The purpose of this study is to evaluation of blood flow clusters distribution, between boys and girls ADHD. The number of normal boys are 8(6-7y, average : $9.6{\pm}3.9y$) and 51(4-11y, average : $9.0{\pm}2.4$) ADHD patients, and normal girls are 4(6-12y, average : $9{\pm}2.4y$) and 13(2-13y, average $10{\pm}3.5y$) ADHD patiens. Blood flow tracer $^{99m}Tc-ethylcysteinate$ dimer(ECD) injected as rCBF agent and take blood flow images after 30 min. during sleeping by SPECT camera. The anatomical region of hyperperfusion of rCBF in boys ADHD group is posterior cingulate gyrus and hyperperfusion rate is 15.39-15.77% according to p-value. And girls ADHD group appears at posterior cerebellum, Lt. cerbral limbic lobe and Lt. Rt. cerebral temporal lobe. These areas hyperperfusion rate are 24.68-31.25%. Hypoperfusion areas in boys ADHD,s brain are Lt. cerebral insular gyrus, Lt. Rt. frontal lobe and mid-prefrontal lobe, these areas decresed blood flow as 15.21-15.64%. Girls ADHD decreased blood flow regions are Lt. cerebral insular gyrus, Lt. cerebral frontal and temporal lobe, Lt. Rt. lentiform nucleus and Lt. parietal lobe. And hypoperfusion rate is 30.57-30.85% in girls ADHD. The girls ADHD group's perfusion rate is more variable than boys. The studies about rCBF in ADHD, should be separate with boys and girls.

  • PDF

Development of Dynamic Kidney Phantom System and its Evaluation of Usability of Application in Nuclear Medicine (핵의학 동적 신장팬텀시스템 개발 적용의 유용성 평가)

  • Park, Hoon-Hee;Lee, Juyoung;Kim, Sang-Wook;Lyu, Kwang Yeul;Jin, Gye Hwan
    • Journal of radiological science and technology
    • /
    • v.36 no.1
    • /
    • pp.49-55
    • /
    • 2013
  • Currently, commercially available phantom can reproduce and evaluate only a static situation, the study is incomplete research on phantom and system which is can confirmed functional situation in the kidney by time through dynamic phantom and blood flow velocity, various difference according to the amount of radioactive. Therefore, through this study, it has produced the dynamic kidney phantom to reproduce images through the dynamic flow of the kidney, it desires to evaluate the usefulness of nuclear medicine imaging. The production of the kidney phantom was fabricated based on the normal adult kidney, in order to reproduce the dynamic situation based on the fabricated kidney phantom, in this study, it was applied the volume pump that can adjust the speed of blood flow, so it can be integrated continuously radioactive isotopes in the kidney by using $^{99m}Tc$-pertechnate. Used the radioactive isotope was supplied through the two pump. It was confirmed the changes according to the infusion rate, radioactive isotopes and the different injection speeds on the left and right, analysis of the acquired images was done by drawn five times ROI in order to check the reproducibility of each on the front and rear of the kidney and bladder. Depending on the speed of injection, radioisotope was a lot of integrated and emissions up when adjusting the pressure of the pump as 30 stroke, it was the least integrated and emissions up when adjusting as 40 stroke. The integration of the left & right kidney was not reached in the amount of the highest when adjusting as 10 stroke. In the changes according to the amount of the radioactive isotope, 0.6 mCi(22.2 MBq), 0.8 mCi (29.6 MBq)was showed up similar tendency but, in the result of the different injection 0.8 mCi, it was showed up counts close to double of 0.6 mCi. In the result of the differently injection speed of the left & right kidney, as a result of different conditions that injection speed was 20 stroke through left kidney phantom, the injection speed was 30 stroke through right kidney phantom, it was enough difference in the resulting image can be easily distinguished with the naked eye. Through this study, the results showed that the dynamic kidney phantom system is able to similarly reproduce renogram in the actual clinical practice. Especially, the depicted over time for the flow to be excreted through the kidney into the bladder was adequately reproduce, it is expected to be utilized as basic data to check the quality of the dynamic images. In addition, it is considered to help in the field of functional imaging and quality control.

Evaluation of Combine IGRT using ExacTrac and CBCT In SBRT (정위적체부방사선치료시 ExacTrac과 CBCT를 이용한 Combine IGRT의 유용성 평가)

  • Ahn, Min Woo;Kang, Hyo Seok;Choi, Byoung Joon;Park, Sang Jun;Jung, Da Ee;Lee, Geon Ho;Lee, Doo Sang;Jeon, Myeong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.201-208
    • /
    • 2018
  • Purpose : The purpose of this study is to compare and analyze the set-up errors using the Combine IGRT with ExacTrac and CBCT phased in the treatment of Stereotatic Body Radiotherapy. Methods and materials : Patient who were treated Stereotatic Body Radiotherapy in the ulsan university hospital from May 2014 to november 2017 were classified as treatment area three brain, nine spine, three pelvis. First using ExacTrac Set-up error calibrated direction of Lateral(Lat), Longitudinal(Lng), Vertical(Vrt), Roll, Pitch, Yaw, after applied ExacTrac moving data in addition to use CBCT and set-up error calibrated direction of Lat, Lng, Vrt, Rotation(Rtn). Results : When using ExacTrac, the error in the brain region is Lat $0.18{\pm}0.25cm$, Lng $0.23{\pm}0.04cm$, Vrt $0.30{\pm}0.36cm$, Roll $0.36{\pm}0.21^{\circ}$, Pitch $1.72{\pm}0.62^{\circ}$, Yaw $1.80{\pm}1.21^{\circ}$, spine Lat $0.21{\pm}0.24cm$, Lng $0.27{\pm}0.36cm$, Vrt $0.26{\pm}0.42cm$, Roll $1.01{\pm}1.17^{\circ}$, Pitch $0.66{\pm}0.45^{\circ}$, Yaw $0.71{\pm}0.58^{\circ}$, pelvis Lat $0.20{\pm}0.16cm$, Lng $0.24{\pm}0.29cm$, Vrt $0.28{\pm}0.29cm$, Roll $0.83{\pm}0.21^{\circ}$, Pitch $0.57{\pm}0.45^{\circ}$, Yaw $0.52{\pm}0.27^{\circ}$ When CBCT is performed after the couch movement, the error in brain region is Lat $0.06{\pm}0.05cm$, Lng $0.07{\pm}0.06cm$, Vrt $0.00{\pm}0.00cm$, Rtn $0.0{\pm}0.0^{\circ}$, spine Lat $0.06{\pm}0.04cm$, Lng $0.16{\pm}0.30cm$, Vrt $0.08{\pm}0.08cm$, Rtn $0.00{\pm}0.00^{\circ}$, pelvis Lat $0.06{\pm}0.07cm$, Lng $0.04{\pm}0.05cm$, Vrt $0.06{\pm}0.04cm$, Rtn $0.0{\pm}0.0^{\circ}$. Conclusion : Combine IGRT with ExacTrac in addition to CBCT during Stereotatic Body Radiotherapy showed that it was possible to reduce the set-up error of patients compared to single ExacTrac. However, the application of Combine IGRT increases patient set-up verification time and absorption dose in the body for image acquisition. Therefore, depending on the patient's situation that using Combine IGRT to reduce the patient's set-up error can increase the radiation treatment effectiveness.

  • PDF