• Title/Summary/Keyword: mechatronics

Search Result 3,327, Processing Time 0.03 seconds

A Study on the Structural Integrity of Transportable Heavy-duty Tracking-mount (이동형 대하중 추적 마운트의 구조 건전성에 대한 연구)

  • Kim, Byung In;Son, Young Soo;Park, Cheol Hoon;Lee, Sung Hwi;Ham, Sang Yong;Jo, Sang Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.879-885
    • /
    • 2013
  • Satellites provide a lot of information and essay roles in the areas of defense and space observations. The precise distances to the satellites are measured by emitting and retro-reflecting a laser. For such surveys, satellite laser ranging (SLR) systems have been developed in different forms and for different areas. The structural integrity of the tracking mount is essential for it to be able to track a high-speed satellite precisely, overcoming the various external and internal disturbances and operating conditions. In this study, the analysis of a tracking mount was performed for weight, wind loads, and inertia loads in order to verify its soundness. The results of the comparison between aluminum and steel were analyzed in order to select the optimal material for the fork and main housing part. In addition, the natural frequency and mode shape were predicted. Optimal material selection and structural integrity will also be verified using static analysis.

AEP Prediction of a Wind Farm in Complex Terrain - WindPRO Vs. WindSim (복잡지형에 위치한 풍력발전단지의 연간발전량 예측 비교 연구)

  • Woo, Jae-Kyoon;Kim, Hyeon-Gi;Kim, Byeong-Min;Gwon, Il-Han;Baek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.1-10
    • /
    • 2012
  • The annual energy production of Gangwon wind farm was predicted for three consecutive years of 2007, 2008 and 2009 using commercial programs, WindPRO and WindSim which are known to be used the most for wind resource prediction in the world. The predictions from the linear code, WindPRO, were compared with both the actual energy prediction presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm and also the predictions from the CFD code, WindSim. The results from WindPRO were close to the actual energy productions and the errors were within 11.8% unlike the expectation. The reason for the low prediction errors was found to be due to the fact that although the wind farm is located in highly complex terrain, the terrain steepness was smaller than a critical angle($21.8^{\circ}$) in front of the wind farm in the main wind direction. Therefore no flow separation was found to occur within the wind farm. The flow separation of the main wind was found to occur mostly behind the wind farm.

DESIGN OF HIGH SENSITIVE SP ACEBORNE MICROWAVE RADIOMETER DREAM ON STSAT-2

  • Kim Sung-Hyun;Lee Ho-Jin;Yun Seok-Hun;Chae Chun-Sik;Park Hyuk;Kim Yong-Hoon;Park Jeong-oh;Sim Eun-Sup;Zhang De-Hai;Jiang Jing-Shan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.526-529
    • /
    • 2005
  • Dual-channel Radiometers for Earth and Atmosphere Monitoring (DREAM) is the Korean first spaceborne microwave radiometer which is the main payload of Science and Technology SATellite-2 (STSAT-2). STSAT-2 will be launched by Korea Space Launch Vehicle-l (KSL V-I) at NARO Space Center in Korea in 2007. DREAM is a two-channel, total power microwave radiometer with the center frequencies of 23.8 GHz and 37 GHz. The spaceborne radiometer is composed of an antenna unit, a receiver unit, and a data acquisition/processing unit. The bandwidths of radiometer are 600 MHz at 23.8 GHz and 1000 MHz at 37 GHz. The integration time of two channels is 200 rns. The sensitivity of DREAM is less than 0.5 K. This paper presents the required performance and system design of DREAM in detail.

  • PDF

Study on Ductile Machining Technology for Manufacturing Nano-Patterns on Single Crystal Silicon through Quantitative Analysis of Thrust Force (배분력의 정량적인 분석을 통한 단결정실리콘의 나노패턴 연성가공법 연구)

  • Choi, Dae-Hee;Jeon, Eun-chae;Yoon, Min-Ah;Kim, Kwang-Seop;Je, Tae-Jin;Jeong, Jun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.11-16
    • /
    • 2016
  • Lithography techniques are generally used to manufacture nano-patterns on silicon, however, it is difficult to make a V-shaped pattern using these techniques. Although silicon is a brittle material, it can be treated as a ductile material if mechanically machined at extremely low force scale. The manufacturing technique of nano-patterns on single crystal silicon using a mechanical method was developed in this study. First, the linear pattern was machined on the silicon with increasing thrust force. Then, the correlation between measured cutting force and machined pattern was analyzed. Based on the analysis, the critical thrust force was quantitatively determined, and then the silicon was machined at a force lower than the critical thrust force. The machined pattern was observed using SEM and AFM to check for the occurrence of brittle fractures. Finally, the sharp V-shaped nano-pattern was manufactured on the single crystal silicon.

Effect of Bone Cement Volume and Stiffness on Occurrences of Adjacent Vertebral Fractures after Vertebroplasty

  • Kim, Jin-Myung;Shin, Dong Ah;Byun, Dong-Hak;Kim, Hyung-Sun;Kim, Sohee;Kim, Hyoung-Ihl
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.5
    • /
    • pp.435-440
    • /
    • 2012
  • Objective : The purpose of this study is to find the optimal stiffness and volume of bone cement and their biomechanical effects on the adjacent vertebrae to determine a better strategy for conducting vertebroplasty. Methods : A three-dimensional finite-element model of a functional spinal unit was developed using computed tomography scans of a normal motion segment, comprising the T11, T12 and L1 vertebrae. Volumes of bone cement, with appropriate mechanical properties, were inserted into the trabecular core of the T12 vertebra. Parametric studies were done by varying the volume and stiffness of the bone cement. Results : When the bone cement filling volume reached 30% of the volume of a vertebral body, the level of stiffness was restored to that of normal bone, and when higher bone cement exceeded 30% of the volume, the result was stiffness in excess of that of normal bone. When the bone cement volume was varied, local stress in the bony structures (cortical shell, trabecular bone and endplate) of each vertebra monotonically increased. Low-modulus bone cement has the effect of reducing strain in the augmented body, but only in cases of relatively high volumes of bone cement (>50%). Furthermore, varying the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies. Conclusion : The volume of cement was considered to be the most important determinant in endplate fracture. Changing the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies.

SYSTEM INTEGRATION AND PERFORMANCE TEST OF DREAM ON STSAT-2

  • Kim, Sung-Hyun;Lee, Ho-Jin;Moon, Nam-Won;Wi, Hoon;Seong, Jin-Taek;Lee, Sang-Hyun;Park, Jong-Oh;Sim, Eun-Sup;Zhang, De-Hai;Jian, Jing-Shan;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.374-377
    • /
    • 2007
  • Dual-channel Radiometers for Earth and Atmosphere Monitoring (DREAM) was developed as the Korean first spaceborne microwave radiometer for earth remote sensing. It is the main payload of the Science and Technology SATellite-2 (STSAT-2). STSAT-2 will be launched by Korea Space Launch Vehic1e-l (KSLV-1) at NARO Space Center in Korea in 2008. The DREAM is a two-channel, total power microwave radiometers with the center frequencies of 23.8 GHz and 37 GHz. The bandwidths of radiometer are 600 MHz at 23.8 GHz and 1000 MHz at 37 GHz. The integration time is 200 ms and the required sensitivity is less than 0.5 K. In this paper, we summarize the specification and performance of the developed DREAM firstly. And we describe system integration and performance test of DREAM mounted on spacecraft.

  • PDF

Design of High Payload Dual Arm Robot with Replaceable Forearm Module for Multiple Tasks: Human Rescue and Object Handling (임무에 따른 하박 교체형 고 가반하중 양팔로봇의 설계: 구난 및 물체 핸들링)

  • Kim, Hwisu;Park, Dongil;Choi, Taeyong;Do, Hyunmin;Kim, Doohyeong;Kyung, Jinho;Park, Chanhun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.441-447
    • /
    • 2017
  • Robot arms are being increasingly used in various fields with special attention given to unmanned systems. In this research, we developed a high payload dual-arm robot, in which the forearm module is replaceable to meet the assigned task, such as object handling or lifting humans in a rescue operation. With each forearm module specialized for an assigned task (e.g. safety for rescue and redundant joints for object handling task), the robot can conduct various tasks more effectively than could be done previously. In this paper, the design of the high payload dual-arm robot with replaceable forearm function is described in detail. Two forearms are developed here. Each of forearm has quite a different goal. One of the forearms is specialized for human rescue in human familiar flat aspect and compliance parts. Other is for general heavy objects, more than 30 kg, handling with high degree of freedom more than 7.