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tebroplasty offers a minimally invasive procedure, which can 
stabilize unstable fractures satisfactorily under local anesthesia, 
without worsening the co-morbidities. Unfortunately, some 
complications of vertebroplasty do exist. Acute complications 
are mostly related to surgical procedures, which include leakage 
of bone cement, infection, and fracture along the path of the 
vertebroplasty cannula14,17). Delayed complication is an occur-
rence of a new fracture in an adjacent vertebra after vertebro-
plasty. Approximately 20% of the patients treated with vertebro-
plasty experience incident fractures within one year and about 
50-67% of the incident fractures occur adjacent to the aug-
mented vertebra3,11,15,19,20).

Although the biomechanical explanation for the subsequent 

INTRODUCTION

Despite the controversy over the role of vertebroplasty, many 
patients with painful osteoporotic compression fractures have 
been treated with the placement of bone cement into the frac-
tured vertebral bodies10,12). It is well known that vertebroplasty 
is quite helpful; not only to reduce pain intensity, but also to sta-
bilize the unstable parts of fractured vertebral columns2,4). For 
patients with vertebral fractures, conservative management 
sometimes fails to prevent the progress of kyphotic deformity, 
yet surgical treatment using metal implants cannot be per-
formed in patients with osteoporotic spines, due to poor bone 
quality and the presence of co-morbidity. In this situation, ver-
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venting adjacent vertebral fractures in relation to the volume and 
stiffness of the bone cement. In this study, we tried to find the 
optimal stiffness and volume of bone cement and their biome-
chanical effect on adjacent vertebrae, using multilevel vertebral 
unit modeling to determine a better strategy in vertebroplasty.

MATERIALS AND METHODS 

A 3-D linear finite element model was generated to study the 
biomechanics of three-level spine segments (T11-L1) with bone 
cement augmentation in the T12 vertebral body. To model a 
3-D geometry of the spine, computed tomographic scans of a 
normal thoracolumbar spinal segment with 1 mm-thick slices 
in the Digital Imaging and Communications in Medicine file 
format and a 3D surface model in the STL file format were pro-
vided from KISTI (Korea Science and Technology Information, 
Seoul, Korea). Then, a customized volume mesh was generated 
by a homemade mesh generation program using MATLAB 
(Mathworks, MA, USA) (Fig. 1). The finite element model of 
each spine consists of three vertebral bodies (T11, T12, L1), 
four cartilage endplates, and posterior elements including the 
spinous and transverse processes and laminae. Intervertebral 
discs were inserted between the vertebral bodies. The vertebral 
bodies were made of outer cortical bone (1 mm thick) and in-
ner trabecular bone, and the superior and inferior surfaces were 
covered by endplates (1 mm thick). The intervertebral discs 
were made of inner nucleus pulposus and outer annulus fibro-
sus. The nucleus pulposus was set to occupy 50% of the total 
surface area of the disc and its height was 1 cm. The annulus fi-
brosus was constructed with 10 folds of fiber layers in a concen-
tric circumferential fashion in the outer margin of the interver-
tebral discs1). 

All materials were modeled as linear-elastic solids with their 
properties assigned as listed in Table 1. Elastic moduli of corti-
cal shell, cancellous bone and endplates were reduced from 
those of normal bone to represent an osteoporotic bone condi-
tion16). Decreasing these moduli resulted in a reduction of the 
overall compression stiffness that made the spinal bodies more 
susceptible to vertebral compression fractures. A barrel-like 
bone cement was given the material properties of polymethyl 
methacrylate (PMMA) (Young’s modulus : 3000 MPa, Poisson’s 

ratio : 0.41), which is the most common 
medium used in clinical procedures. To 
investigate the effect of the stiffness of 
the bone cement, Young’s modulus of 
the bone cement was varied from 500 to 
3000 MPa. In a clinical setting, Young’s 
modulus of bone cement can be varied 
by introducing pores into the cement or 
by copolymerizing PMMA beads with 
ethyl-, propyl-, or butyl-methacrylate. 
The volume of bone cement was varied 
with respect to the volume of the can-

fractures in levels adjacent to the augmented body is not com-
plete, the bone cement and its effect on the non-augmented ver-
tebra are agreed to be the determinants of adjacent vertebral 
fractures. To determine the effect of bone cement on the treated 
and non-augmented vertebrae, simulation studies using finite el-
ement modeling are regarded as useful methods to delineate the 
pathophysiology of adjacent vertebral fractures5,6,8,16). Instead of 
using human specimen, finite element modeling has the advan-
tages of radical avoidance of individual variability and easy ac-
quisition of various parameters such as intradiscal pressure, 
bone strain, and facet joint contact pressure. Finite element 
modeling has become a valid tool for analyzing spinal biome-
chanics with low cost and reduced time. Berlemann et al.8) hy-
pothesized that the increased stiffness of the treated vertebral al-
ters the load transfer to the adjacent non-augmented level, 
leading to weakening of the spinal unit. Baroud et al.5,6) and Po-
likeit et al.16) demonstrated that augmented vertebra reduced the 
normal cushioning function of endplates, consequently the pres-
sures in the discs and endplates of non-treated vertebra in-
creased. The increased stress is likely to place the non-augment-
ed vertebra at risk of fracture. However, there is a paucity of 
biomechanical studies that provide information regarding pre-

Fig. 1. Geometry of multilevel spinal units with customized volume 
mesh used in the finite element analysis. The unit consists of three seg-
ments (T11, T12, & L1) and bone cement is inserted into T12.

Table 1. Material properties to represent osteoporosis in the study 

Material Young’s Modulus (MPa) Poisson’s Ratio Ref.
Vertebra
    Cortical Shell 8040 (normal=12000) 0.3 15
    Trabecular Core (unaugmented) 34 (normal=100) 0.2
    Endplate 670 (normal=1000) 0.4
Disc
    Nucleus Pulposus 0.2 0.4999
    Annulus Fibrosus 360-500 0.45 14
Bone Cement
    PMMA Bone Cement 500-3000 0.41 19
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the augmented body (T12) underwent a dramatic change with 
increase in bone cement volume. With the change of 10% to 
90% bone cement volume, the stress increase was 0.038 MPa in 
the cancellous bone of the augmented T12.

The stress level varied in the endplates with changes in bone 
cement filling volume. With respect to the T12 vertebrae, the 
magnitude of stress increase was much greater with those end-
plates located above the augmented body than those below. 
With the change of 10% to 90% bone cement volume, the T11 
inferior endplate and the T12 superior endplate experienced 
stress increases of 0.34 MPa and 0.39 MPa, respectively. In con-
trast, the T12 inferior endplate and the L1 superior endplate ex-
perienced only 0.037 MPa and 0.083 MPa stress increases.

Along with the increase in the magnitude of stress and strain 
with bone cement volume increase, the overall stress and strain 
distributions in the structures were greatly altered upon bone 
cement augmentation, subjecting larger areas to higher stresses 
and strains with the bone cement volume increase. As the bone 
cement volume increased, the change in stress distribution and 
magnitude were apparent in the vertebrae directly above the 
augmented body. In contrast, the vertebra below the augment-
ed level did not show marked changes even with 90% filling 
volume of bone cement (Fig. 3). 

As the stiffness of bone cement was increased from 500 MPa to 
3000 MPa, the structures in the augmented body showed a great-
er change in strain level compared to the adjacent non-augment-
ed vertebrae. Fig. 4 shows the percentile change in maximal prin-
cipal strain in the structures of each vertebra, when the elastic 
modulus of the bone cement was increased from 500 MPa to 
3000 MPa. The changes in nucleus pulposus and annulus fibro-
sus were not marked. 

DISCUSSION 

Our study showed that the volume of bone cement is the crit-
ical factor with regards to the restoration of biomechanical stiff-

cellous bone of the T12 segment from 10% to 90% filling volume.
The fixed boundary condition restrained the bottom plate of 

the L1 segment in a translational axis but rotational motion was 
allowed in order to make the model more realistic. Compres-
sive loading with a magnitude of 1000 N was applied to the 
front face of the top surface of the T11 cortical shell. Both the 
magnitude and the distribution of local stresses and strains in 
each material were computed using ABAQUS (SIMULIA, RI, 
USA) finite element analysis software. The developed finite 
model was validated by comparing its stiffness to that reported 
previously.

RESULTS 

Compressive stiffness was calculated by dividing the axial 
compressive load of 1000 N by the maximum vertical displace-
ment measured at a point on the top of the T11 segment. The 
stiffness of the vertebral bodies increased monotonically with 
bone cement volume. When bone cement filling volume reached 
30% of the volume of a vertebral body, its stiffness was restored 
to that of normal bone, and bone cement filling volume of 
higher than 30% of the volume of a vertebral body resulted in 
stiffness in excesses of that of normal bone (Fig. 2).

When bone cement volume was varied, the local stress in the 
bony structures (cortical shell, trabecular bone and endplate) of 
each vertebra changed. In general, the stress level monotonical-
ly increased with bone cement volume in all structures. Under 
the given compressive loading, the cortical shell of the T11 ver-
tebral segment was subject to the greatest stress. Also, it experi-
enced the greatest stress increase with increasing bone cement 
volume compared to cortical shells in other vertebrae. When 
bone cement volume increased from 10% to 90%, stress in the 
cortical shell of T11 increased by 0.34 MPa, while the cortical 
shells of T12 and L1 experienced stress increases of 0.24 MPa 
and 0.082 MPa, respectively. The stress level change in the corti-
cal shell of L1 was negligible over the course of the change of 
bone cement volume from 10% to 90%, 
whereas both cortical shells of T11 and 
T12 underwent relatively constant stress 
increases up to 60% bone cement vol-
ume and significantly rapidly rapid in-
crease beyond that. 

Relatively equivalent results of changes 
in stress level were shown in the trabec-
ular bone of each vertebra with changes 
in bone cement volume. When the bone 
cement volume was changed from 10% 
to 90%, the magnitude of stress increase 
was 0.012 MPa for the cancellous bone 
of T11 and only 0.0043 MPa for the can-
cellous bone of L1. Different from what 
was seen with stress change in the corti-
cal shell, stress in the cancellous bone of 

Fig. 2. Stiffness change with different bone cement volumes. When bone cement volume of 30% is 
used, stiffness is restored from osteoporotic bone state to the condition of normal bone and further 
increase in bone cement volume results in stiffness value beyond that of normal bone. 
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and, as a result, less deformation of the vertebral body, higher 
than 50% bone cement volume is not currently being suggested 
in practical procedures, since higher bone cement volumes are 
accompanied with higher risks of leakage problems.

Our study demonstrated that stresses in all bony structures in 
adjacent vertebral bodies of the augmented spine segment in-
creased with bone cement volume. In particular, stresses in the 
cranial vertebral body positioned above the augmented seg-
ment showed a much greater increase than those in the verte-
bral body beneath. Consequently, the level directly above the 
augmented vertebral body is much more susceptible to subse-

ness of osteoporotic vertebral bodies. While Liebschner et al.13) 
finite element analysis results showed that 15% bone cement 
volume was necessary to restore the stiffness of a fractured ver-
tebral body, there is a general consensus on biomechanics of 
augmented vertebral bodies that approximately 30% or lower 
bone cement is required to restore the mechanical stiffness of a 
fractured vertebrae with osteoporotic conditions7). Our results 
also demonstrated that the initial stiffness of the vertebral body 
was restored when the T12 segment was augmented with ap-
proximately 30% bone cement volume.

Even though higher cement volumes led to higher stiffness 

Fig. 3. Sagittal plane of the studied spine segments with contours showing von Mises stress distribution for different bone cement filling volumes. 
Changes in both magnitude and distribution of stress in each vertebral body can be observed with more apparent changes in upper vertebra (T11) 
than lower one (L1).

Fig. 4. Percentile difference in maximal principal strains in structures when bone cement stiffness is increased from 1000 MPa to 3000 MPa with 
50% bone cement volume. Negligible changes are observed in all structures but in cortical shell and trabecular core of T11 and T12 segment. 
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larger range of patients with patient-specific data, so that an ap-
propriate protocol for vertebroplasty can be made for individual 
patients. Due to morphological variations present in the geo-
metrical model of the studied segments, it was very hard to as-
sign the center of rotation at which axial compression can be ap-
plied regardless of any non-reproducible movements acting on 
the vertebrae. The influence of disc degeneration on the alterna-
tion of load transfer should not be overlooked and should be in-
cluded in a complete study. In addition, the results of this study 
do not provide absolute answers to vertebroplasty but it should 
be noted that the optimization of bone cement volume is patient 
specific; the volume of bone cement should be based on the size, 
body mineral density and stiffness of the vertebra of individual 
patients.

CONCLUSION

The modeling results suggest that bone cement volume can 
have significant effect on the occurrences of subsequent verte-
bral fractures after vertebroplasty. The compressive stiffness of 
osteoporotic vertebra can be restored to normal range with only 
30% bone cement volume. Stiffness increases further with high-
er bone cement volume than 30% but may result in the subse-
quent fractures of adjacent vertebral bodies, most likely in cra-
nial direction. Low-modulus bone cement does have effect on 
reducing the strains in the augmented body but only with rela-
tively high volumes of bone cement (>50%). Furthermore, vary-
ing stiffness of bone cement has a negligible effect on stress dis-
tribution of vertebral bodies. 
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