• Title/Summary/Keyword: mechanical resistance

Search Result 4,102, Processing Time 0.035 seconds

Effects of Porosity on Durability in a Porous Nozzle for Continuous Casting (연속주조용 Porous Nozzle의 기공율이 내구성에 미치는 영향)

  • Yoon, Sanghyeon;Cho, Mun-Kyu;Jeong, Doo Hoa;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.625-629
    • /
    • 2010
  • This study investigates the effects of porosity on the thermal stability and the thermal shock resistance of a porous nozzle used for blowing an inert gas. The samples of $Al_2O_3-SiO_2-ZrO_2$ system, which had the apparent porosity of 16~30% and bulk density of $2.6{\sim}3.2g/cm^3$, were prepared by adding different graphite contents (5, 10, 20 wt%) as a pore-forming agent. The thermal shock test was conducted at ${\Delta}T=500$, 1000, and $1400^{\circ}C$ also and the thermal stability was also carried out at 1550, 1600, and $1650^{\circ}C$ for 5 hrs. The specimen contained 10 wt% graphite had uniform pore size distribution, whereas the specimen with 20 wt% graphite showed non-uniform pore size distribution. As a result of thermal shock test, the specimen containing 10 wt% graphite appears to have higher mechanical strength than the other specimens (5, 20 wt% graphite). Both the 5 wt% and 20 wt% graphite specimens developed a non-uniform pore size distribution and cracks that were generated by intensive thermal stress.

A Study on the Preferred Orientation Characteristics of AlN Thin Films by Reactive Evaporation Method using NH3 (NH3를 이용한 반응성 증착법에 의한 AlN 박막의 우선배향특성에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.78-85
    • /
    • 2012
  • Aluminum nitride(AlN) is a compound (III-V group) of hexagonal system with a crystal structure. Its Wurzite phase is a very wide band gap semiconductor material. It has not only a high thermal conductivity, a high electrical resistance, a high electrical insulating constant, a high breakdown voltage and an excellent mechanical strength but also stable thermal and chemical characteristics. This study is on the preferred orientation characteristics of AlN thin films by reactive evaporation using $NH_3$. We have manufactured an AlN thin film and then have checked the crystal structure and the preferred orientation by using an X-ray diffractometer and have also observed the microstructure with TEM and AlN chemical structure with FT-IR. We can manufacture an excellent AlN thin film by reactive evaporation using $NH_3$ under 873 K of substrate temperature. The AlN thin film growth is dependent on Al supplying and $NH_3$ has been found to be effective as a source of $N_2$. However, the nuclear structure of AlN did not occur randomly around the substrate a particle of the a-axis orientation in fast growth speed becomes an earlier crystal structure and is shown to have an a-axis preferred orientation. Therefore, reactive evaporation using $NH_3$ is not affected by provided $H_2$ amount and this can be an easy a-axis orientation method.

Cyclic test for solid steel reinforced concrete frames with special-shaped columns

  • Liu, Zu Q.;Xue, Jian Y.;Zhao, Hong T.;Gao, Liang
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.317-331
    • /
    • 2014
  • An experimental study was performed to investigate the seismic performance of solid steel reinforced concrete (SRC) frames with special-shaped columns that are composed of SRC special-shaped columns and reinforced concrete beams. For this purpose, two models of two-bay and three-story frame, including an edge frame and a middle frame, were designed and tested. The failure process and patterns were observed. The mechanical behaviors such as load-displacement hysteretic loops and skeleton curves, load bearing capacity, drift ratio, ductility, energy dissipation and stiffness degradation of test specimens were analyzed. Test results show that the failure mechanism of solid SRC frame with special-shaped columns is the beam-hinged mechanism, satisfying the seismic design principle of "strong column and weak beam". The hysteretic loops are plump, the ductility is good and the capacity of energy dissipation is strong, indicating that the solid SRC frame with special-shaped columns has excellent seismic performance, which is better than that of the lattice SRC frame with special-shaped columns. The ultimate elastic-plastic drift ratio is larger than the limit value specified by seismic code, showing the high capacity of collapse resistance. Compared with the edge frame, the middle frame has higher carrying capacity and stronger energy dissipation, but the ductility and speed of stiffness degradation are similar. All these can be helpful to the designation of solid SRC frame with special-shaped columns.

Dynamic Simulation of Ground Source Heat Pump with a Vertical U-tube Ground Heat Exchanger (수직형 U자 관 지중 열교환기를 갖는 지열원 열펌프의 동적 시뮬레이션)

  • Lee, Myung-Taek;Kim, Young-Il;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.372-378
    • /
    • 2007
  • GHX (Geothermal Heat Exchanger) design which determines the performance and initial cost is the most important factor in ground source heat pump system. Performance of GHX is strongly dependent on the thermal resistance of soil, grout and pipe. In general, GHX design is based on the static simulation program. In this study, dynamic simulation has been peformed to analyze the variation of system performance for various GHX parameters. Line-source theory has been applied to calculate the variation of ground temperature. The averaged weather data measured during a 10-year period $(1991\sim2000)$ in Seoul is used to calculate cooling and heating loads of a building with a floor area of $100m^2$. The simulation results indicate that thermal properties of borehole play significant effect on the overall performance. Change of grout thermal conductivity from 0.4 to $3.0W/(m^{\circ}C)$ increases COP of heating by 9.4% and cooling by 17%. Change of soil thermal conductivity from 1.5 to $4.0W/(m^{\circ}C)$ increases COP of heating by 13.3% and cooling by 4.4%. Change of GHX(length from 100 to 200 m increases COP of heating by 10.6% and cooling by 10.2%. To study long term performance, dynamic simulation has been conducted for a 20-year period and the result showed that soil temperature decreases by $1^{\circ}C$, heating COP decreases by 2.7% and cooling COP decreases by 1.4%.

Uncertainty Analysis for Seakeeping Model Tests (정현파 중 운동모형시험에 대한 불확실성 해석)

  • Deuk-Joon Yum;Ho-Young Lee;Choung-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.75-89
    • /
    • 1993
  • The present paper describes an application of UA(Uncertainty Analysis) to seakeeping model test, basically according to the Performance Test Code of ASME(American Society of Mechanical Engineers), in which all the possible error sources involved in the preparation of test, calibration of instruments, data acquisition and analysis are quantified, and summed up with error propagation coefficients to the final uncertainties. The differences between the static test such as resistance and propulsion test and the dynamic test like seakeeping test are clearly identified during all the procedures of UA and asymmetric bias errors are considered. The DRE(data reduction equation) subject to present UA are the heave and pitch response amplitude operator and nondimensionalized absolute frequency. The usefulness of UA in seakeeping test were confirmed not only for quantifying errors and improving measurement accuracy but also for the validation of various seakeeping analysis tools.

  • PDF

COLLAPSE PRESSURE ESTIMATES AND THE APPLICATION OF A PARTIAL SAFETY FACTOR TO CYLINDERS SUBJECTED TO EXTERNAL PRESSURE

  • Yoo, Yeon-Sik;Huh, Nam-Su;Choi, Suhn;Kim, Tae-Wan;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.450-459
    • /
    • 2010
  • The present paper investigates the collapse pressure of cylinders with intermediate thickness subjected to external pressure based on detailed elastic-plastic finite element (FE) analyses. The effect of the initial ovality of the tube on the collapse pressure was explicitly considered in the FE analyses. Based on the present FE results, the analytical yield locus, considering the interaction between the plastic collapse and local instability due to initial ovality, was also proposed. The collapse pressure values based on the proposed yield locus agree well with the present FE results; thus, the validity of the proposed yield locus for the thickness range of interest was verified. Moreover, the partial safety factor concept based on the structural reliability theory was also applied to the proposed collapse pressure estimation model, and, thus, the priority of importance of respective parameter constituting for the collapse of cylinders under external pressure was estimated in this study. From the application of the partial safety factor concept, the yield strength was concluded to be the most sensitive, and the initial ovality of tube was not so effective in the proposed collapse pressure estimation model. The present deterministic and probabilistic results are expected to be utilized in the design and maintenance of cylinders subjected to external pressure with initial ovality, such as the once-through type steam generator.

Property Evaluation of Tungsten-Carbide Hard Materials as a Function of Binder (소결조제 변화에 따른 텅스텐카바이드 소결체 특성평가)

  • Kim, Ju-Hun;Oh, Ik-Hyun;Lee, Jeong-Han;Hong, Sung-Kil;Park, Hyun-Kuk
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.132-137
    • /
    • 2019
  • Tungsten carbide (WC) hard materials are used in various industries and possess a superior hardness compared to other hard materials. They have particularly high melting points, high strength, and abrasion resistance. Accordingly, tungsten carbide hard materials are used for wear-resistant tools, cutting tools, machining tools, and other tooling materials. In this study, the WC-5wt.%Co, Fe, Ni hard materials are densified using the horizontal ball milled WC-Co, WC-Fe, and WC-Ni powders by a spark plasma sintering process. The WC-5Co, WC-5Fe, and WC-5Ni hard materials are almost completely densified with a relative density of up to 99.6% after simultaneous application of a pressure of 60 MPa and an electric current for about 15 min without any significant change in the grain size. The average grain size of WC-5Co, WC-5Fe, and WC-5Ni that was produced through SPS was about 0.421, 0.779, and $0.429{\mu}m$, respectively. The hardness and fracture toughness of the dense WC-5Co, WC-5Fe, WC-5Ni hard materials were also investigated.

Investigation on Size Distribution of Tungsten-based Alloy Particles with Solvent Viscosity During Ultrasonic Ball Milling Process (초음파 볼밀링 공정에 의한 용매 점도 특성에 따른 텅스텐계 합금 분쇄 거동)

  • Ryu, KeunHyuk;So, HyeongSub;Yun, JiSeok;Kim, InHo;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.201-207
    • /
    • 2019
  • Tungsten heavy alloys (W-Ni-Fe) play an important role in various industries because of their excellent mechanical properties, such as the excellent hardness of tungsten, low thermal expansion, corrosion resistance of nickel, and ductility of iron. In tungsten heavy alloys, tungsten nanoparticles allow the relatively low-temperature molding of high-melting-point tungsten and can improve densification. In this study, to improve the densification of tungsten heavy alloy, nanoparticles are manufactured by ultrasonic milling of metal oxide. The physical properties of the metal oxide and the solvent viscosity are selected as the main parameters. When the density is low and the Mohs hardness is high, the particle size distribution is relatively high. When the density is high and the Mohs hardness is low, the particle size distribution is relatively low. Additionally, the average particle size tends to decrease with increasing viscosity. Metal oxides prepared by ultrasonic milling in high-viscosity solvent show an average particle size of less than 300 nm based on the dynamic light scattering and scanning electron microscopy analysis. The effects of the physical properties of the metal oxide and the solvent viscosity on the pulverization are analyzed experimentally.

A Study on the Steel Anticorrosive Effect of Fiber-Reinforced Cement Composite (FRCC) by using Metal Fibers (금속섬유를 이용한 섬유보강 시멘트 복합재료(FRCC)의 철근 방식 효과)

  • Choi, Hyeong-Gil;Choi, Hee-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.23-30
    • /
    • 2019
  • Fiber-Reinforced Cement Composite (FRCC) is known to be effective in mechanical effects such as cracking width control as well as steel anticorrosive effect. In this study, we examined about steel anticorrosive effect by using metal fibers including zinc fibers by accelerated corrosion test. Moreover, it was examined for salt penetration, sacrificial anode effect and formation of electric circuit that was significant effect on the steel anticorrosive effect. As a result, Steel anticorrosive effect was confirmed with mixed metal fibers on FRCC. Especially, In the case of zinc fibers with a high sacrificial anode effect, it was confirmed that the suppression of penetration and corrosion resistance were improved.

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion Between CFRP and A516Gr.55 Carbon Steel

  • Hur, Seung Young;Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.129-137
    • /
    • 2019
  • CFRP (Carbon Fiber Reinforced Plastics) is composed of carbon fiber and plastic resin, and is approximately 20 - 50% lighter than metallic materials. CFRP has a low density, higher specific stiffness, specific strength, and high corrosion resistance. Because of these excellent properties, which meet various regulation conditions needed in the industrial fields, CFRP has been widely used in many industries including aviation and ship building. However, CFRP reveals water absorption in water immersion or high humidity environments, and water absorption occurs in an epoxy not carbon fiber, and can be facilitated by higher temperature. Since these properties can induce volume expansion inside CFRP and change the internal stress state and degrade the chemical bond between the fiber and the matrix, the mechanical properties including bond strength may be lowered. This study focused on the effects of NaCl concentration (0.01 - 1% NaCl) and solution temperature ($30-75^{\circ}C$) on the galvanic corrosion between CFRP and A516Gr.55 carbon steel. When NaCl concentration increases 10 times, corrosion rate of a specimen was not affected, but that of galvanic coupled carbon steel increased by 46.9% average. However, when solution temperature increases $10^{\circ}C$, average corrosion rate increased approximately 22%, regardless of single or galvanic coupled specimen.