Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.2.132

Property Evaluation of Tungsten-Carbide Hard Materials as a Function of Binder  

Kim, Ju-Hun (Korea Institute of Industrial Technology (KITECH), EV Components Materials)
Oh, Ik-Hyun (Korea Institute of Industrial Technology (KITECH), EV Components Materials)
Lee, Jeong-Han (Korea Institute of Industrial Technology (KITECH), EV Components Materials)
Hong, Sung-Kil (Division of Advanced Materials Engineering, Chonnam National University)
Park, Hyun-Kuk (Korea Institute of Industrial Technology (KITECH), EV Components Materials)
Publication Information
Journal of Powder Materials / v.26, no.2, 2019 , pp. 132-137 More about this Journal
Abstract
Tungsten carbide (WC) hard materials are used in various industries and possess a superior hardness compared to other hard materials. They have particularly high melting points, high strength, and abrasion resistance. Accordingly, tungsten carbide hard materials are used for wear-resistant tools, cutting tools, machining tools, and other tooling materials. In this study, the WC-5wt.%Co, Fe, Ni hard materials are densified using the horizontal ball milled WC-Co, WC-Fe, and WC-Ni powders by a spark plasma sintering process. The WC-5Co, WC-5Fe, and WC-5Ni hard materials are almost completely densified with a relative density of up to 99.6% after simultaneous application of a pressure of 60 MPa and an electric current for about 15 min without any significant change in the grain size. The average grain size of WC-5Co, WC-5Fe, and WC-5Ni that was produced through SPS was about 0.421, 0.779, and $0.429{\mu}m$, respectively. The hardness and fracture toughness of the dense WC-5Co, WC-5Fe, WC-5Ni hard materials were also investigated.
Keywords
WC-Co; WC-Fe; WC-Ni; Spark plasma sintering process; Mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. C. Kim, Ph D. Thesis (in Korean), Chonbuk University Chonbuk (2005) 15.
2 H. C. Kim, I. J. Shon and Z. A. Munir : J. Mater. Sci., 40 (2005) 2849.   DOI
3 H. C. Kim, D. Y. Oh and I. J. Shon : Int. J. Refract. Met. and Hard Mater., 22 (2004) 197.   DOI
4 H. C. Kim, H. K. Park, I. K. Jung, I. Y. Ko and I. J. Shon : Ceram. Int., 34 (2008) 1419.   DOI
5 Z. Shen, M. Johnsson, Z. Zhao and M. Nygren : J. Am. Ceram. Soc., 85 (2002) 1921.   DOI
6 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade and P. Asoka-Kummar : Appl. Phys. Lett., 85 (2004) 573.   DOI
7 J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir : Intermetallics, 12 (2004) 589.   DOI
8 H. C. Kim, I. J. Shon, I. K. Jung and I. Y. Ko : Met. Mater. Int., 12 (2006) 393.   DOI
9 K. Jia, T. E. Fischer and B. Gallois : Nanostruct. Mater., 10 (1998) 875.   DOI
10 J. H. Han and D. Y. Kim : Acta Mater., 46 (1998) 2021.   DOI
11 I. K. Jeong, J. H. Park, J. M. Doh, K. Y. Kim, K. D. Woo, I. Y. Ko and I. J. Shon : J. Kor. Inst. Met & Mater., 46 (2008) 223.
12 M.J. Ledoux, C. P. Huu, J. Guille and H. Dunlop : J. Catal., 134 (1992) 383.   DOI
13 C. Suryanarayana, M. Grant, and C. Norton : X-ray diffraction a practical approach, Plenum Press, New York (1998).
14 G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall : J. Am. Ceram. Soc., 64 (1981) 533.   DOI
15 J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir : Acta Mater., 51 (2003) 4487.   DOI