DOI QR코드

DOI QR Code

A Study on the Preferred Orientation Characteristics of AlN Thin Films by Reactive Evaporation Method using NH3

NH3를 이용한 반응성 증착법에 의한 AlN 박막의 우선배향특성에 관한 연구

  • Oh, Chang-Sup (Korea Institute of Science and Technology Information, Reseat Program) ;
  • Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University)
  • 오창섭 (한국과학기술정보연구원) ;
  • 한창석 (호서대학교 국방과학기술학과)
  • Received : 2011.07.05
  • Published : 2012.01.25

Abstract

Aluminum nitride(AlN) is a compound (III-V group) of hexagonal system with a crystal structure. Its Wurzite phase is a very wide band gap semiconductor material. It has not only a high thermal conductivity, a high electrical resistance, a high electrical insulating constant, a high breakdown voltage and an excellent mechanical strength but also stable thermal and chemical characteristics. This study is on the preferred orientation characteristics of AlN thin films by reactive evaporation using $NH_3$. We have manufactured an AlN thin film and then have checked the crystal structure and the preferred orientation by using an X-ray diffractometer and have also observed the microstructure with TEM and AlN chemical structure with FT-IR. We can manufacture an excellent AlN thin film by reactive evaporation using $NH_3$ under 873 K of substrate temperature. The AlN thin film growth is dependent on Al supplying and $NH_3$ has been found to be effective as a source of $N_2$. However, the nuclear structure of AlN did not occur randomly around the substrate a particle of the a-axis orientation in fast growth speed becomes an earlier crystal structure and is shown to have an a-axis preferred orientation. Therefore, reactive evaporation using $NH_3$ is not affected by provided $H_2$ amount and this can be an easy a-axis orientation method.

Keywords

Acknowledgement

Supported by : 호서대학교

References

  1. S. Bengtsso, M. Bergh, M. Choumas, C. Olesen, and K. O. Jeppson, Jpn. J. Appl. Phys. 35, 4175 (1996).
  2. T. Adam, J. Kolodzey, C. P. Swann, M. W. Tsao, and J. F. Rabolt, Appl. Surf. Sci. 175/176, 428 (2001).
  3. D. Gaspera, E. Buso, D. Guglielmi, M. Martucci, A. Bello, V. Mattei, G. Post, M. L. Cantalini, C. Agnoli, S. Granozzi, G. Sadek, A. Z. Kalantar-zadeh, and K. Wlodarski, Sensors and actuators. B, Chemical, 143, 567 (2010).
  4. K. Kaya, H. Takahashi, Y. Shibta, Y. Kano, and T. Hirai, Jpn. J. Appl. Phys. 36, 307 (1997).
  5. C. H. Bae, S. O. Han, and C. S. Han, Kor. J. Met. Mater. 48, 268 (2010).
  6. C. S. Han and S. O. Han, Kor. J. Met. Mater. 49, 256 (2011).
  7. A. Giardini Gudoni, A. Mele, R. Teghil, V. Marotta, S. Orlando, and A. Santagata, Appl. Surf. Sci. 109/110, 537 (1997).
  8. A. Giardini Gudonl, A. Mele, T. M. Dipalma, C. Flamini, S. Orlando, and R. Teghil, Thin Solid Films. 77, 295 (1997).
  9. F. Takeda, R. Takihashi, and T. Mori, Trans. IECE. 101/A, 483 (1980).
  10. J. Yang, C. Wang, X. Yan, K. Too, B. Lin, and Y. Fan, Appl. Phys. Lett. 62, 2790 (1993).
  11. H. Takikawa, N. kawakami, and T. Skakibara, Thin Solid Films. 120/121, 383 (1999).
  12. M. Ishihara, H. Yumoto, T. Tsuchiya, and K. Akashi, Thin Solid Films. 281/282, 321 (1996).
  13. M. Ishihara, S. J. Li, H. Yumoto, K. Akashi, and Y. Ide, Thin Solid Films. 316, 152 (1998).
  14. T. Shiosaki, T. Yamamoto, T. Oda, K. Harada, and A. Kawabata, Jpn. J. Appl. Phys. 20, 149 (1981).
  15. F. Takeda, R. Takihashi, and T. Mori, Trans. IECE. 101/A, 483 (1980).
  16. M. Ishihara, S. J. Li, H. Yumoto, K. Akashi, and Y. Ide, Thin Solid Films. 316, 152 (1998).
  17. F. Engelmark, G. Fucntes, I. V. Katardjiev, A. Harsta, U. Smith, and S. Berg, J. Vac. Sci. Tech. A. 18, 1609 (2000).
  18. V. Dumitru, C. Morosanu, V. Sandu, and A. Stoica, Thin Solid Films. 359, 17 (2000).