DOI QR코드

DOI QR Code

Effects of Porosity on Durability in a Porous Nozzle for Continuous Casting

연속주조용 Porous Nozzle의 기공율이 내구성에 미치는 영향

  • Yoon, Sanghyeon (School of Materials Science & Engineering, Pusan National University) ;
  • Cho, Mun-Kyu (New Materials Research Department, Research Institute of Industrial Science & Technology) ;
  • Jeong, Doo Hoa (New Materials Research Department, Research Institute of Industrial Science & Technology) ;
  • Lee, Heesoo (School of Materials Science & Engineering, Pusan National University)
  • 윤상현 (부산대학교 재료공학부) ;
  • 조문규 (포항산업과학연구원 원천소재연구본부) ;
  • 정두화 (포항산업과학연구원 원천소재연구본부) ;
  • 이희수 (부산대학교 재료공학부)
  • Received : 2010.03.29
  • Published : 2010.07.22

Abstract

This study investigates the effects of porosity on the thermal stability and the thermal shock resistance of a porous nozzle used for blowing an inert gas. The samples of $Al_2O_3-SiO_2-ZrO_2$ system, which had the apparent porosity of 16~30% and bulk density of $2.6{\sim}3.2g/cm^3$, were prepared by adding different graphite contents (5, 10, 20 wt%) as a pore-forming agent. The thermal shock test was conducted at ${\Delta}T=500$, 1000, and $1400^{\circ}C$ also and the thermal stability was also carried out at 1550, 1600, and $1650^{\circ}C$ for 5 hrs. The specimen contained 10 wt% graphite had uniform pore size distribution, whereas the specimen with 20 wt% graphite showed non-uniform pore size distribution. As a result of thermal shock test, the specimen containing 10 wt% graphite appears to have higher mechanical strength than the other specimens (5, 20 wt% graphite). Both the 5 wt% and 20 wt% graphite specimens developed a non-uniform pore size distribution and cracks that were generated by intensive thermal stress.

Keywords

Acknowledgement

Supported by : 포항산업과학연구원, 지식경제부

References

  1. K. C. Cho, Y. M. Koo, and J. K. Park, J. Kor. Inst. Met. & Mater. 46, 329 (2008).
  2. M. K. Fishler and P. Pittsburgh, U.S. 4568007, 02. 04 (1986).
  3. S. G. Choi and T. S. Lee, KR-B-10-0352603, 08. 30 (2002).
  4. X. M. Feng and Z. F. Ping, Refrac. Mater. 36, 83 (2002).
  5. B. G. Thomas and L. Zhang, ISIJ Int. 41, 1181 (2001). https://doi.org/10.2355/isijinternational.41.1181
  6. S. Goberis, Refrac. Ind. Ceram. 44, 65 (2003). https://doi.org/10.1023/A:1023980014830
  7. C. Zanelli, M. Dondi, M. Raimondo, and G. Guarini, J. Europ. Ceram. Soc. 30, 29 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.07.016
  8. B. H. Yoon, E. J. Lee, H. E. Kim, and Y. H. Koh, J. Am. Ceram. Soc. 90, 1753 (2007). https://doi.org/10.1111/j.1551-2916.2007.01703.x
  9. N. M. Rendtorff, L. B. Garrido, and E. F. Aglietti, Mater. Sci. Eng. A 498, 208 (2008). https://doi.org/10.1016/j.msea.2008.08.036
  10. Y. W. Kim, S. H. Kim, I. H. Song, H. D. Kim, and C. B. Park, J. Am. Ceram. Soc. 88, 2949 (2005). https://doi.org/10.1111/j.1551-2916.2005.00509.x
  11. J. F. Yang, G. J. Zhang, and J. Ohji, Mater. Res. 16, 1916 (2001). https://doi.org/10.1557/JMR.2001.0262
  12. E. Gregorova, Z. Zivcova, and W. Pabst, J. Mater. Sci. 41, 6119 (2006). https://doi.org/10.1007/s10853-006-0475-z
  13. Z. Zivcova, E. Gredorova, W. Pabt, D. S. Smith, A. Michot, and C. Poulier, J. Europ. Ceram. Soc. 29, 347 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.06.018
  14. D. N. Boccaccini, M. Romagnoli, E. Kamseu, P. Veronesi, C. Leonelli, and G. C. Pellacani, J. Europ. Ceram. Soc. 27, 1859 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.070
  15. M. Collin and D. Rowcliffe, Acta Mater. 48, 1655 (2000). https://doi.org/10.1016/S1359-6454(00)00011-2
  16. N. Rendtorff, L. Garrido, and E. Aglietti, Ceram. Int. 35, 779 (2009). https://doi.org/10.1016/j.ceramint.2008.02.015
  17. L. Shen, M. Liu, X. Liu, and B. Li, Mater. Res. Bul. 42, 2048 (2007). https://doi.org/10.1016/j.materresbull.2007.02.001
  18. A. G. Lanin and A. L. Tkachev, J. Mater. Sci. 35, 2353 (2000). https://doi.org/10.1023/A:1004720119431
  19. M. Chen, C. Lu, and J. Yu, J. Europ. Ceram. Soc. 27, 4633 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.04.001
  20. S. H. Chae, J. H. Eom, Y. W. Kim, I. H. Song, H. D. Kim, J. S. Bae, S. M. Na, and S. I. Kim, J. Kor. Ceram. Soc. 45, 65 (2008). https://doi.org/10.4191/KCERS.2008.45.1.065
  21. G. M. Evans, G. D. Rigby, T. A. Honeyands, and Q. L. He, Chem. Eng. Sci. 54, 4861 (1999). https://doi.org/10.1016/S0009-2509(99)00206-7
  22. Y. K. Son, Y. B. Lee, Y. W. Kim, K. D. Oh, and H. C. Park, J. Kor. Ceram. Soc. 37, 174 (2000).
  23. S. H. Risbud and J. A. Pask, J. Mater. Sci. 13, 2449 (1978). https://doi.org/10.1007/BF00808060
  24. D. Y. Jeng and M. N. Rahaman, J. Mater. Sci. 28, 4421 (1993). https://doi.org/10.1007/BF01154951
  25. J. Yang, J. Kor. Ceram. Soc. 35, 399 (1998).
  26. S. J. Kim, H. G. Bang, and S. Y. Park, J. Kor. Ceram. Soc. 43, 351 (2006). https://doi.org/10.4191/KCERS.2006.43.6.351
  27. C. Yuan, L. J. Vandeperre, R. J. Stearn, and W. J. Clegg, J. Mater. Sci. 43, 4099 (2008). https://doi.org/10.1007/s10853-007-2238-x