• Title/Summary/Keyword: mechanical pumping

Search Result 243, Processing Time 0.021 seconds

A Study for Regulating Flow Fluctuation and Preventing Backflow of Peristaltic Pump (연동펌프의 유량맥동 조절과 역류현상을 방지하는 장치에 대한 연구)

  • Jeong, Yoo-seok;Lee, Cheol-Soo;Lee, Tae-Kyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.28-34
    • /
    • 2016
  • Though a peristaltic pump is a crucial element in miniaturized drug delivery systems, it has some intrinsic disadvantages such as backflow and flow fluctuation. To overcome these limitation, we have developed valve-less peristaltic pump system including orifice and stagnation chamber. we measured flow rate to investigate the performance of rotary peristaltic pump with three rollers and an elastomeric tube pumping a viscous fluid. The flow fluctuations and the backflow happen as a result from the disengagement of the contact interaction between the rollers and the tubes. Stagnation chamber installed in front of orifice plate was composed of rubber tube and gas chamber. By changing orifice hole diameter with stagnation chamber flow rate and pressure in the tube was regulated. The obtained maximum reduction ratio of flow fluctuation is 96.79%.

Numerical Study on the Motion of Azimuthal Vortices in Axisymmetric Rotating Flows

  • Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.313-324
    • /
    • 2004
  • A rich phenomenon in the dynamics of azimuthal vortices in a circular cylinder caused by the inertial oscillation is investigated numerically at high Reynolds numbers and moderate Rossby numbers. In the actual spin-up flow where both the Ekman circulation and the bottom friction effects are included, the first appearance of a seed vortex is generated by the Ekman boundary-layer on the bottom wall and the subsequent roll-up near the corner bounded by the side wall. The existence of the small vortex then rapidly propagates toward the inviscid region and induces a complicated pattern in the distribution of azimuthal vorticity, i.e. inertial oscillation. The inertial oscillation however does not deteriorate the classical Ekman-pumping model in the time scale larger than that of the oscillatory motion. Motions of single vortex and a pair of vortices are further investigated under a slip boundary-condition on the solid walls. For the case of single vortex, repeated change of the vorticity sign is observed together with typical propagation of inertial waves. For the case of a pair of vortices with a two-step profile in the initial azimuthal velocity, the vortices' movement toward the outer region is resisted by the crescent-shape vortices surrounding the pair. After touching the border between the core and outer regions, the pair vortices weaken very fast.

On the Instantaneous and Average Piston Friction of Swash Plate Type Hydraulic Axial Piston Machines

  • Jeong, Heon-Sul;Kim, Hyoung-Eui
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1700-1711
    • /
    • 2004
  • Piston friction is one of the important but complicated sources of energy loss of a hydraulic axial piston machine. In this paper, two formulas are derived for estimating instantaneous piston friction force and average piston friction moment loss. The derived formula can be applicable for piston guides with or without bushing as well as for axial piston machines of motoring and pumping operations. Through the formula derivation, a typical curve shape of friction force found from several experimental measurements during one revolution of a machine is clearly explained in this paper that it is mainly due to the equivalent friction coefficient dependent on its angular position. Stribeck curve effect can easily be incorporated into the formula by replacing outer and inner friction coefficients at both edges of a piston with the coefficient given by Manring (1999) considering mixed/boundary lubrication effects. Novel feature of the derived formula is that it is represented only by physical dimensions of a machine, hence it allows to estimate the piston friction force and loss moment of a machine without hardworking experimental test.

A Study on the Drag Reduction by an Additives in Cylindrical Vertical Tube (수직원형관에서 첨가제에 따른 마찰저항 감소에 관한 연구)

  • Cha, K.O.;Kim, J.G.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.85-96
    • /
    • 2000
  • When the liquid with the additive of ppm unit of a polymer flows, the pressure drop can be manifestly decreased compared to that of pure liquid: that's the drag reduction. This method is that a small amount of a polymer which doesn't make the transformation of the properties of the working fluid is dissolved into the working fluid, the links of chains of the polymer do a buffer action to the molecules of the working fluid which come out between near the wall of the pipe and the interface, so that the pressure drop is dramatically decreased. When we transport the fluid, therefore, we can save a lot of pumping power, or we can increase the transportation capacity with using the same transportation equipment. But when a polymer solution is also flowing in the fluid transportation system, the degradation which have a very close relation with the phenomena of the drag reduction occurs necessarily. When adding polymer to reduce the drag in two phase flow system, It is impossible to find some studies. This study is focussing on a searching examination for the experimental study considering the mechanical degradation in the closed tow phase system to find out the conditions which could improve the pump capacity.

  • PDF

Conceptual design and analysis of rotor for a 1-kW-Class HTS rotating machine

  • Kim, J.H.;Hyeon, C.J.;Quach, H.L.;Chae, Y.S.;Moon, J.H.;Boo, C.J.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.45-50
    • /
    • 2017
  • This paper presents a conceptual design and analysis for a 1-kW-class high-temperature superconducting rotating machine (HTSRM) rotor. The designed prototype is a small-scale integration system of a HTSRM and a HTS contactless rotary excitation device (CRED). Technically, CRED and HTSRM are connected in the same shaft, and it effectively charges the HTS coils of the rotor field winding by pumping fluxes via a non-contact method. HTS coils in rotor pole body and toroidal HTS wire in CRED rotor are cooled and operated by liquid nitrogen in cryogen tank located in inner-most of rotor. Therefore, it is crucial to securely maintain the thermal stability of cryogenic environment inside rotor. Especially, we critically consider not only on mechanical characteristics of the rotor but also on cryogenic thermal characteristics. In this paper, we conduct two main tasks covering optimizing a conceptual design and performing operational characteristics. First, rotor parameters are conceptually designed by analytical design codes. These parameters consider to mechanical and thermal performances such as mechanical strength, mechanical rigidity, and thermal heat losses of the rotor. Second, mechanical and thermal characteristics of rotor for 1-kW-class HTSRM are analyzed to verify the feasible operation conditions. Hence, three-dimensional finite element analysis (3D-FEA) method is used to perform these analyses in ANSYS-Workbench platform.

Evaluation of Reverse Electrodialysis System with Various Compositions of Natural Resources (다양한 농도 공급원의 조합을 통한 역전기투석 장치의 성능 평가)

  • Kwon, Kilsung;Park, Byung Ho;Kim, Dukhan;Kim, Daejoong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.513-518
    • /
    • 2015
  • Salinity gradient power (SGP) has attracted significant attention because of its high potential. In this study, we evaluate reverse electrodialysis (RED) with various compositions of available resources. The polarization curve (I-V characteristics) shows linear behavior, and therefore the power density curve has a parabolic shape. We measure the power density with varying compartment thicknesses and inlet flow rates. The gross power density increases with decreasing compartment thickness and increasing flow rate. The net power density, which is the gross power density minus the pumping power, has a maximum value at a compartment thickness of 0.2 mm and an inlet flow rate of 22.5 mL/min. The power density in RED is also evaluated with compositions of desalination brines, seawater, river water, wastewater, and brackish water. A maximum power density of $1.75W/m^2$ is obtained when brine discharged from forward osmosis (FO) and river water are used as the concentrated and the diluted solutions, respectively.

Development and in Vivo Test of an Electrohydraulic Total Artificial Heart at the National Cardiovascular Center in Japan (일본 국립 순환기 센타형 전기유압식 인공심장의 개발과 동물실험)

  • 손영상
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 1998
  • The ultimate goal of total artificial heart is permanent substitute for a failed heart in a patient without any other therapeutic modality. Until now, infection has been the main problem related to the mechanical circulatory support system. The best way to solve this catastrophic complication and to improve the quality of life of TAH patients in terms of tethering must be implantation of TAH totally. The EH-TAH has been developed in NCVC from 1987 for this purpose. The system consists of an energy converter and pumps, which are designed to be placed in abdomen and pericardial space separately for a good anatomical fit. To evaluate the anatomical fit and hemodynamic performance of the EH-TAH, in vivo test was done. General condition of the animal and hemodynamic status had been stable until the TAH stopped on the 11th pumping day. The estimated cardiac output was about 7.7L/min. The values of mean aortic pressure, left and right atrial pressure were 93$\pm$10, 19$\pm$3 and 15$\pm$4 mmHg, respectively. The correlation coefficient between left and right atrial pressure was 0.96, which represents the dynamic function of the interatrial shunt in controlling left-right imbalance of cardiac output. During pumping days, the temperature on the surface of actuator had been maintained at 39.7$\pm$0.4$^{\circ}C$, less than 1$^{\circ}C$ higher than the rectal temperature. The TAH stopped on the 11th day due to mechanical problems. We concluded that the EH-TAH possessed satisfactory basic performance including anatomic fit and hemodynamic adequacy, although there were several mechanical problems to be solved yet.

  • PDF

CFD Based Shape Design of Guide Vane for Fan Filter Unit (전산유체해석을 이용한 Fan Filter Unit(FFU)의 가이드 베인 형상설계)

  • Jang, Jun Hwan;Ahn, Joon;Myong, Hyon Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.709-716
    • /
    • 2013
  • A fan filter unit (FFU) is a device which supplies clean air from the ceiling in a clean room. With an increase in its size, velocity variation occurs within the exhaust plane and this damage the product quality or productivity. Hence, a guide vane is installed inside the device to enhance the velocity uniformity. Because the vane reduces the flow rate for a given pumping power, an optimum design is required to achieve velocity uniformity while minimizing the flow rate reduction at the same time. To find a geometry that satisfies these requirements, a series of numerical simulations has been conducted while changing the angle and length of the guide vanes. By changing the geometry of the side guide vane, the velocity uniformity increased by 3.7% and the flow rate decreased by 1.5%. For the center guide vane, the velocity uniformity increased by 2.9% and the flow rate decreased by 0.7%.

Energy Consumption Evaluation in Pumping System with Different Building Characteristics (건물 특성에 따른 냉수 순환 펌핑 시스템 별 에너지 소모량 분석)

  • Shin, Dong-Shin;Park, Sung-Bin;Jun, Tae-Ik;Ma, Kang-Il;Kim, Tae-Hong;Lee, Sung-Goo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.242-247
    • /
    • 2016
  • This study analyzed the energy consumption of a building pump system that was originally equipped with a primary-secondary zone pump system. Using the HYSYS program the energy consumption of the primary pump system was compared with the primary-secondary zone pump system. The primary-secondary zone pump system consumes less energy than the originally designed primary pump system. When the distance between the machine room and each building is assumed to be equal, the primary pump system can be more efficient than the primary-secondary zone pump system with decreasing the distance. When the distance is 120 m, the primary system consumes less total annual energy than the primary-secondary zone pump system and saves 2,773 kWh. The suggested energy evaluation program can be useful if the designer seeks a more efficient pump system.

A study on the discharge ratio of two solutions with different viscosities using computational fluid analysis (전산유체해석을 이용한 점도가 다른 이종 용액의 토출 비율 연구)

  • Ko, Min-Sung;Wi, Eun-Chan;Yun, Yi-Seob;Kong, Jung-Shik;Lee, Joong-Bae;Kim, Min-Su;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.43-50
    • /
    • 2021
  • Pump-cap is a device for discharging the contents stored inside a container to the outside of the container by a simple operation by a certain amount. In particular, in recent years, as the number of cosmetic products made of functional materials has rapidly increased, the development of convenient containers for functional materials is being actively conducted. Among these, there are a growing number of products that show their efficacy only by mixing two components, so the development of a dual pump cap container is necessary. However, the conventional dual pump cap container has a problem in that it is difficult to implement a quantitative discharge as solutions having different viscosities are used. Therefore, in this study, a discharge port of a dual pump cap that can apply an optimal ratio was designed by analyzing the discharge amount of two components with different viscosities through computational fluid dynamics. Since the discharge amount is affected by the size of the discharge port, the higher the viscosity of the solution, the larger the discharge port should be set. Conversely, the lower the viscosity, the smaller the discharge port should be. Through this, it is possible to dispense a fixed amount of a heterogeneous solution by one pumping, and it is determined that the user's convenience will increase.