DOI QR코드

DOI QR Code

다양한 농도 공급원의 조합을 통한 역전기투석 장치의 성능 평가

Evaluation of Reverse Electrodialysis System with Various Compositions of Natural Resources

  • 투고 : 2015.01.09
  • 심사 : 2015.04.08
  • 발행 : 2015.06.01

초록

농도차발전은 전 세계적으로 높은 잠재적 에너지량으로 인하여 최근 많은 주목을 받고 있다. 본 연구에서는 양이온과 음이온의 선택적 분리를 통하여 전기를 생성하는 역전기투석을 이용하여 다양한 농도 공급원의 조합으로부터 성능을 평가하였다. 역전기투석 장치의 분극곡선은 전류가 증가할 때 전압이 선형적으로 감소하였고, 최대출력밀도는 내부저항과 외부저항이 일치하는 부분에서 얻어졌다. 내부 유로두께가 감소하고 공급유량이 증가할 때 역전기투석 장치에서 생성되는 출력이 증가하는 것을 발견하였고, 공급유체의 펌핑에 의해 발생되는 출력 손실을 고려한 정미출력은 공급유량이 22.5mL/min 에서 최대값을 가졌다. 최종적으로 담수화 브라인, 해수, 강물, 폐수, 기수를 조합하여 역전기투석 장치의 성능을 평가하였고 정삼투 과정에서 발생하는 브라인과 강물을 이용할 때 $1.75W/m^2$ 으로 최대값을 얻었다.

Salinity gradient power (SGP) has attracted significant attention because of its high potential. In this study, we evaluate reverse electrodialysis (RED) with various compositions of available resources. The polarization curve (I-V characteristics) shows linear behavior, and therefore the power density curve has a parabolic shape. We measure the power density with varying compartment thicknesses and inlet flow rates. The gross power density increases with decreasing compartment thickness and increasing flow rate. The net power density, which is the gross power density minus the pumping power, has a maximum value at a compartment thickness of 0.2 mm and an inlet flow rate of 22.5 mL/min. The power density in RED is also evaluated with compositions of desalination brines, seawater, river water, wastewater, and brackish water. A maximum power density of $1.75W/m^2$ is obtained when brine discharged from forward osmosis (FO) and river water are used as the concentrated and the diluted solutions, respectively.

키워드

참고문헌

  1. Alvarez-Silva, O., Winter, C. and Osorio, A. F., 2014, "Salinity Gradient Energy at River Mouths," Environ. Sci. Technol. Lett., Vol. 1, No. 10, pp.410-415. https://doi.org/10.1021/ez500239n
  2. Post, J. W., Veerman, J., Hamelers, H. V. M., Euverink, G. J. W., Metz, S. J., Nymeijer, K. and Buisman, C. J. N., 2007, "Salinity-Gradient Power: Evaluation of Pressure-Retarded Osmosis and Reverse Elerctrodialysis," J. Membrane Sci., Vol. 288, No. 1-2, pp. 218-230. https://doi.org/10.1016/j.memsci.2006.11.018
  3. Loeb, S., Hessen, F. V. and Shahaf, D., 1976, "Production of Energy from Concentrated Brines by Pressure-Retarded Osmosis: II. Experimental Results and Projected Energy Costs," J. Membrane Sci., Vol. 1 pp. 249-269. https://doi.org/10.1016/S0376-7388(00)82271-1
  4. Achilli, A. and Childress, A. E., 2010, "Pressure Retarded Osmosis: From the Vision of Sidney Loeb to the First Prototype Installation - Review," Desalination, Vol. 261, No. 3, pp. 205-211. https://doi.org/10.1016/j.desal.2010.06.017
  5. Yip, N. Y. and Elimelech, M., 2014, "Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis," Environ. Sci. Technol., Vol. 48, No. 18, pp. 11002-11012. https://doi.org/10.1021/es5029316
  6. Kwon, K., Lee, S. J., Li, L., Han, C. and Kim, D., 2014, "Energy Harvesting System Using Reverse Electrodialysis with Nanoporous Polycarbonate Track-Etch Membranes," Int. J. Energy. Res., Vol. 38, No. 4, pp. 530-537. https://doi.org/10.1002/er.3111
  7. Choi, E., Kwon, K., Kim, D. and Park, J., 2015, "Tunable Reverse Electrodialysis Microplatform with Geometrically Controlled Self-Assembled Nanoparticle Network," Lab Chip, Vol. 15, pp. 168-178. https://doi.org/10.1039/C4LC01031K
  8. Vermaas, D. A., Saakes, M. and Nijmeijer, K., 2011, "Power Generation using profiled Membranes in Reverse Electrodialysis," J. Membrane Sci., Vol. 385-386, pp. 234-242. https://doi.org/10.1016/j.memsci.2011.09.043
  9. Pattle, R. E., 1954, "Production of Electric Power by Mixing Fresh and Salt Water in the Hydraulic Pile," Nature, Vol. 174, p. 660. https://doi.org/10.1038/174660a0
  10. Turek, M. and Bandura, B., 2007, "Renewable Energy by Reverse Electrodialysis," Desalination, Vol. 205, No. 1-3, pp. 67-74. https://doi.org/10.1016/j.desal.2006.04.041
  11. Vermaas, D. A., Saakes, M. and Nijmeijer, K., 2011, "Doubled Power Density from Salinity Gradients at Reduced Intermembrane Distance," Vol. 45, No. 16, pp. 7089-7095. https://doi.org/10.1021/es2012758
  12. Dlugolecki, P., Dabrowska, J., Nijmeijer, K. and Wessling, M., 2010, "Ion Conductive Spacers for Increased Power Generation in Reverse Electrodialysis," J. Membrane Sci., Vol. 347, No. 1-2, pp. 101-107. https://doi.org/10.1016/j.memsci.2009.10.011
  13. Guler, E., Elizen, R., Vermaas, D. A., Saakes, M. and Nijmeijer, K., 2013, "Perfromance-determining Membrane Properties in Reverse Electrodialysis," J. Membrane Sci., Vol. 446, pp. 266-276. https://doi.org/10.1016/j.memsci.2013.06.045
  14. Kim, D.-K., Duan, C., Chen, Y. F. and Majumdar, A., 2010, "Power Generation from Concentration Gradient by Reverse Electrodialysis in Ion-Selective Nanochannels," Microfluid. Nanofluid. Vol. 9, No. 6, pp. 1215-1224. https://doi.org/10.1007/s10404-010-0641-0
  15. Kim, Y. and Elimelech, M., 2013, "Potential of Osmotic Power Generation by Pressure Retarded Osmosis using Seawater as Feed Solution: Analysis and Experiments," J. Membrane Sci., Vol. 429, pp. 330-337. https://doi.org/10.1016/j.memsci.2012.11.039
  16. Li, W., Krantz, W. B., Cornelissen, E. R., Post, J. W., Verliefde, A. R. D. and Tang, C. Y., 2013, "A Novel Hybrid Process of Reverse Electrodialysis and Reverse Osmosis for Low Energy Seawater Desalination and Brine Management," Appl. Energy, Vol. 104, pp. 592-602. https://doi.org/10.1016/j.apenergy.2012.11.064
  17. McGinnis, R. and Elimelech, M., 2007, "Energy Requirements of Ammonia-Carbon Dioxide Forward Osmosis Desalination," Desalination, Vol. 207, No. 1-3, pp. 370-382. https://doi.org/10.1016/j.desal.2006.08.012
  18. Feinberg, B. J., Ramon, G. Z. and Hoek, E. M. V., 2013, "Thermodynamic Analysis of Osmotic Energy Recovery at a Reverse Osmosis Desalination Plant," Environ. Sci. Technol., Vol. 47, No. 6, pp. 2982-2989. https://doi.org/10.1021/es304224b
  19. Kwon, K., Kang, H., Kang, S. and Kim, D., 2013, "Evaluation of Reciprocating Electromagnetic Air Pumping for Portable PEMFC," J. Micromech. Microeng., Vol. 23, No. 6, pp. 065007. https://doi.org/10.1088/0960-1317/23/6/065007
  20. Kwon, K. and Kim, D., 2010, "Air Pumps for Polymer Electrolyte Membrane Fuel Cells," Trans. Korean Soc. Mech. Eng. B, Vol. 34, No. 7, pp. 715-720. https://doi.org/10.3795/KSME-B.2010.34.7.715
  21. Tedesco, M., Cipollina, A., Tamburini, A., van Baak, W. and Micale, G., 2012, "Modelling the Rverse Eectrodialysis Process with Sawater and Concentrated Brines," Desalin. Water Treat., Vol. 49, No. 1-3, pp. 404-424. https://doi.org/10.1080/19443994.2012.699355