• Title/Summary/Keyword: mechanical circuits

Search Result 235, Processing Time 0.024 seconds

Optimal design of a piezoelectric passive damper for vibrating plates

  • Yun, Chul-Yong;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.42-49
    • /
    • 2006
  • In this paper, an efficient piezoelectric passive damper is newly devised to suppress the multi-mode vibration of plates. To construct the passive damper, the piezoelectric materials are utilized as energy transformer, which can transform the mechanical energy to electrical energy. To dissipate the electrical energy transformed from mechanical energy, multiple resonant shunted piezoelectric circuits are applied. The dynamic governing equations of a coupled electro-mechanical piezoelectric with multiple piezoelectric patches and multiple resonant shunted circuits is derived and solved for the one edge clamped plate. The equations of motion of the piezoelectrics and shunted circuits as well as the plate are discretized by finite element method to estimate more exactly the effectiveness of the piezoelectric passive damper. The method to find the optimal location of a piezoelectric is presented to maximize effectiveness for desired modes. The electro-mechanical coupling term becomes important parameter to select the optimal location.

Performance Characteristics of Thermoelectric Generator Modules For Parallel and Serial Electrical Circuits (전기회로 구성 방법에 따른 열전발전 모듈 성능 특성)

  • Kim, Yun-Ho;Kim, Myung-Kee;Kim, Seo-Young;Rhee, Gwang-Hoon;Um, Suk-Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.259-267
    • /
    • 2010
  • An experiment has been performed in order to investigate the characteristics of multiple thermoelectric modules (TEMs) with electrical circuits. The open circuit voltage of TEM connected parallel circuit is equal to the sum of individual TEMs. In contrast, the open circuit voltage is equal to the average of that individual TEM for a series circuit. The power output and conversion efficiency of TEM for both parallel and series circuits increase as the operating temperature conditions for individual TEMs becomes identical. Comparing parallel with series circuits, the power generation performance is more excellent for series circuit than parallel circuit. This result is attributed to the power loss from the TEM with better power generation performance.

A study on the molding of dome shaped plastic parts embedded with electronic circuits (전자회로 일체형 돔 형상의 플라스틱 부품 성형에 관한 연구)

  • Seong, Gyeom-Son;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • Smart systems in different application areas such as automotive, medical and consumer electronics require a novel manufacturing method of electronic, optical and mechanical functions into products. Traditional methods including mechanical assembly, bonding of plastic and electronic circuit cause the problems in large size of products and complicated manufacturing processes. In this study, thermoforming and film insert molding were applied to fabricate a dome shaped plastic part embedded with electronic circuits. The deformation of patterns printed on PET film was predicted by thermoforming simulation using T-SIM, and the results were compared with those by experiment. In order to decrease spring-back after thermoforming, the Taguchi method of design of experiment was used. Through ANOVA analysis, it was found that mold temperature was the most dominant parameter for spring-back. By using flow analysis, gate design was performed to decrease injection pressure. During film insert molding, the wash-out of ink printed on film occurred for Polycarbonate. When the resin was changed to PMMA, the wash-out disappeared due to low melt temperature.

Effects of Contact Conditions on the Connector Electrical Resistance of Direct Current Circuits

  • Kim, Young-Tae;Sung, In-Ha;Kim, Jin-San;Kim, Dae-Eun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.5-10
    • /
    • 2004
  • Electric contacts serve the purpose of transmitting electric signals across two conducting components. In this paper, the effects of contact conditions such as surface roughness, oxidation, and contamination were investigated with respect to electrical resistance variation of a connector in a direct current circuit. Such change in the electrical resistance is particularly important for low power circuits. The experimental results showed that compared with the effects of contact surface scratch or oxidation, the effect of contamination on the resistance variation was the most significant. In order to minimize failure due to electrical resistance change at the contact region, proper sealing to prevent contamination from entering the interface is needed.

Reexamination and Derivation of Empirical Dynamic Model for a Hydraulic Bleed-Off Circuit (유압 블리드-오프 회로의 특성 재검토 및 실험적 동특성 모델링)

  • Jeong, Heon-Sul;Lee, Gwang-Heon;Kim, Hyeong-Ui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1552-1564
    • /
    • 2002
  • Meter-in, meter-out and bleed-off circuits are widely utilized in order to adjust the speed of a hydraulic actuator by using a flow control valve and in order to regulate the pressure of a hydraulic volume by using a simple on-off valve. In these circuits, a relief valve serves either to maintain constant system pressure or to protect the system from over-pressure loading. The relief valve of a bleed-off circuit is the second case frequently undergoing on-off action during operation. It makes the analysis of the pressure control characteristics of the circuit highly difficult. In this paper, steady-state flow rate, pressure, heat loss and efficiency of the three circuits are reexamined and basic experiments far obtaining the characteristics of a pump and relief valve are conducted. Finally, simple empirical first-order dynamic models of decreasing and increasing pressure were separately proposed and verified by comparison with experiment. As the result, the basis for the theoretical analysis of the pressure control characteristics of a bleed-off circuit using a simple on-off valve is established.

Fabrication of 3D-Printed Circuit Device using Direct-Write Technology (Direct Write 기술을 이용한 3DCD의 제작)

  • Yun, Hae Young;Kim, Ho Chan;Lee, In Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2016
  • Generally, electrical circuits are fabricated as Printed Circuit Boards (PCBs) and mounted on the casing of the product. Additionally, this requires many other parts and some labor for assembly. Recently, molding technology has increasingly been applied to embed simple circuits in plastic casing. The technology is called a Molded Interconnected Device (MID). By using this technology, PCB fabrication can be replaced by molding, and much of the corresponding assembly process for PCBs can be eliminated if the circuit is simple enough for molding. Furthermore, as the improvement of conductive materials and printing technologies of simple electric circuits can be printed directly on the casing part, this also reduces the complexity of the product design and production cost. Therefore, this paper introduces a new MID fabrication process using direct 3D printing technology. Additionally, it is applied to an automotive part of a cruise control switch. The methodology and design are shown.

Basic Research For The 3DCD (3D Circuit Devices) (3DCD (3D Circuit Devices) 개발을 위한 기초 연구)

  • Yun, Hae Yong;Kim, Ho Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1061-1066
    • /
    • 2014
  • Generally electrical circuits are fabricated as PCB(Printed Circuit Board) and mounted on a casing of the product. And it requires lots of other parts and some labor for assembly. Recently a molding technology is increasingly applied to embed simple circuits on a plastic casing. The technology is called as MID(Molded Interconnected Device). Therefore this paper introduces a new MID fabrication process by using direct 3D printing technology.

Fabrication of White Light Emitting Diode Lamp Designed by Photomasks with Serial-parallel Circuits in Metal Interconnection ($\cdot$병렬 회로로 금속배선된 포토마스크로 설계된 백색LED 조명램프 제조 공정특성 연구)

  • Song, Sang-Ok;Kim, Keun-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.3 s.12
    • /
    • pp.17-22
    • /
    • 2005
  • LED lamp was designed by the serial-parallel integration of LED chips in metal-interconnection. The 7 $4.5{\times}4.5\;in^{2}$ masks were designed with the contact type of chrome-no mirror?dark. The white epitaxial thin film was grown by metal-organic chemical vapor deposition. The active layers were consisted with the serial order of multi-quantum wells for blue, green and red lights. The fabricated LED chip showed the electroluminescence peaked at 450, 560 and 600 nm. For the current injection of 20 mA, the operating voltage was measured to 4.25 V and the optical emission power was obtained to 0.7 $\mu$W.

  • PDF

Double Gate MOSFET Modeling Based on Adaptive Neuro-Fuzzy Inference System for Nanoscale Circuit Simulation

  • Hayati, Mohsen;Seifi, Majid;Rezaei, Abbas
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.530-539
    • /
    • 2010
  • As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, quantum mechanical effects are expected to become more and more important. Accurate quantum transport simulators are required to explore the essential device physics as a design aid. However, because of the complexity of the analysis, it has been necessary to simulate the quantum mechanical model with high speed and accuracy. In this paper, the modeling of double gate MOSFET based on an adaptive neuro-fuzzy inference system (ANFIS) is presented. The ANFIS model reduces the computational time while keeping the accuracy of physics-based models, like non-equilibrium Green's function formalism. Finally, we import the ANFIS model into the circuit simulator software as a subcircuit. The results show that the compact model based on ANFIS is an efficient tool for the simulation of nanoscale circuits.

OTFT Application to Flexible Displays and Integrated Circuits (플렉시블 디스플레이와 집적회로에의 OTFT 응용)

  • Kim, Kang-Dae;Xu, Yong-Xian;Lee, Myung-Won;Ryu, Gi-Seong;Song, Chung-Kun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.441-445
    • /
    • 2007
  • In this paper we demonstrated the applications of OTFTs (organic thin film transistors) to flexible displays such as AM-EPD (active matrix electrophoretic display) and AM-OLED (active matrix organic light emitting diode), and also to integrated circuits. The OTFTs using pentacene semiconductor layer and PVP gate dielectric and Au S/D electrodes exhibited good performance for AM-EPD with the mobility of $0.59\;cm^{2}/V.sec,$ and with also good uniformity over 2.5" diagonal area. However, it is nor enough for AM-OLED requiring the mobility larger than $1\;cm^{2}/V.sec$ for large area displays. The integrated circuits also worked, producing the operating frequency of 1MHz. We need to develop a fabrication process to reduce parasitic capacitance for high frequency operation.

  • PDF