• Title/Summary/Keyword: mean shape

Search Result 1,288, Processing Time 0.026 seconds

Variation of Capacity Factors by Weibull Shape Parameters (와이블 형상계수에 따른 이용률 변화)

  • Kwon, Il-Han;Kim, Jin-Han;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • Effects of Weibull shape parameter, k, on capacity factors of wind turbines were investigated. Wind distributions with mean wind speeds of 5 m/s, 6 m/s, 7 m/s and 8 m/s were simulated and used to estimate the annual energy productions and capacity factors of a 2MW wind turbine for various Weibull shape parameters. It was found from the study that the capacity factors of wind turbines are much affected by Weibull shape parameters. When the annual mean wind speed at the hub height of a wind turbine was about 7 m/s, and the air density was assumed to be 1.225 $kg/m^3$, the maximum capacity factor of a 2 MW wind turbine having a rated wind speed of 13 m/s was found to occur with the shape parameter of 2. It was also found that as the mean wind speed increased, the Weibull k parameter which yielded the maximum capacity factor increased. The simulated results were also validated by predictions of capacity factors of wind turbines using wind data measured in complex terrain.

ACMs-based Human Shape Extraction and Tracking System for Human Identification (개인 인증을 위한 활성 윤곽선 모델 기반의 사람 외형 추출 및 추적 시스템)

  • Park, Se-Hyun;Kwon, Kyung-Su;Kim, Eun-Yi;Kim, Hang-Joon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • Research on human identification in ubiquitous environment has recently attracted a lot of attention. As one of those research, gait recognition is an efficient method of human identification using physical features of a walking person at a distance. In this paper, we present a human shape extraction and tracking for gait recognition using geodesic active contour models(GACMs) combined with mean shift algorithm The active contour models (ACMs) are very effective to deal with the non-rigid object because of its elastic property. However, they have the limitation that their performance is mainly dependent on the initial curve. To overcome this problem, we combine the mean shift algorithm with the traditional GACMs. The main idea is very simple. Before evolving using level set method, the initial curve in each frame is re-localized near the human region and is resized enough to include the targe region. This mechanism allows for reducing the number of iterations and for handling the large object motion. The proposed system is composed of human region detection and human shape tracking modules. In the human region detection module, the silhouette of a walking person is extracted by background subtraction and morphologic operation. Then human shape are correctly obtained by the GACMs with mean shift algorithm. In experimental results, the proposed method show that it is extracted and tracked efficiently accurate shape for gait recognition.

  • PDF

SHAPE OPERATOR AND GAUSS MAP OF POINTWISE 1-TYPE

  • KIM, DONG-SOO;KIM, YOUNG HO
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1337-1346
    • /
    • 2015
  • We examine the relationship of the shape operator of a surface of Euclidean 3-space with its Gauss map of pointwise 1-type. Surfaces with constant mean curvature and right circular cones with respect to some properties of the shape operator are characterized when their Gauss map is of pointwise 1-type.

SHAPE OPERATOR AH FOR SLANT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

  • KIM, DONG-SOO;KIM, YOUNG-HO;LEE, CHUL-WOO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.189-201
    • /
    • 2005
  • In this article, we establish relations between the sectional curvature function K and the shape operator, and also relationship between the k-Ricci curvature and the shape operator for slant submanifolds in generalized complex space forms with arbitrary codimension.

SHAPE OPERATOR OF SLANT SUBMANIFOLDS IN SASAKIAN SPACE FORMS

  • Kim, Young-Ho;Lee, Chul-Woo;Yoon, Dae-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.63-76
    • /
    • 2003
  • In this article, we establish relations between the sectional curvature and the shape operator and also between the k-Ricci curvature and the shape operator for a slant submanifold in a Sasakian space form of constant $\varphi-sectional$ curvature with arbitrary codimension.

Efficient Method for Selecting Ground Motions with a Mean Response Spectrum Matching a Target Spectrum (목표스펙트럼에 근사한 평균응답스펙트럼을 갖는 지반운동집단의 효율적인 선정방법)

  • Han, Sang-Whan;Seok, Seung-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.1-10
    • /
    • 2011
  • This paper proposes an efficient method for selecting ground motions with the mean response spectrum matching a target spectrum. Since former studies reported that the shape and amplitude of the response spectra can be treated independently for selecting ground motions, this study first selects ground motions such that the shape of their mean response spectrum matches that of the target spectrum, then scales the ground motions. To select the ground motions best matching the shape of the target response spectrum, the standard deviation of the difference between the target response spectrum and the mean response spectrum of the selected ground motions needs to be minimized. Unlike the existing procedure, the scaling factor can be computed without iteration. Based on the selection results of 7 ground motions from a library of 40 ground motions, the proposed method is verified as an accurate and efficient method.

A Study on the Reliability Attributes of the Software Reliability Model Following the Shape Parameter of Minimax Life Distribution (미니맥스 수명분포의 형상모수를 따르는 소프트웨어 신뢰모형에 관한 신뢰속성에 관한 연구)

  • Kim, Hee-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.325-330
    • /
    • 2018
  • This paper, following the shape parameters of the minimax distribution, describes the special form of the beta distribution, the Minimax distribution, as a function of the shape parameters for the software reliability model based on the non-homogeneous Poisson process. Characteristics and usefulness were discussed. As a result, the case of the shape parameter 1 of Minimax distribution than less than and greate in mean squared error is the smallest, in determination coefficient, appears to be high, the shape parameter 1 of Minimax distribution regard as an efficient model. The estimated determination coefficient of the proposed model is estimated to be more than 95%, which is a useful model in the field of software reliability. Through this study, software design and users can identify the software failure characteristics using mean square error, decision coefficient, and confidence interval can be used as a basic guideline.

Evaluation of Elastic Modulus in a Particulate Reinforced Composite by Shape Memory Effect (형상기억입자 강화 복합체의 탄성계수 평가)

  • Kim, Hong-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.25-31
    • /
    • 2001
  • The theoretical modeling to predict the modulus of elasticity by the shape memory effect of dispersed particles in a metal matrix composite was studied. The modeling approach is based on the Eshelbys equivalent inclusion method and Mori-Tanakas mean field theory. The calculation was performed on the TiNi particle dispersed Al metal matrix composites(PDMMC) with varying volume fractions and prestrains of the particle. It was found that the prestrain has no effect on the Yonugs modulus of PDMMC but the volume fraction does affects it. This approach has an advantage of definite control of Youngs modulus in PDMMCs.

Fluctuating wind loads across gable-end buildings with planar and curved roofs

  • Ginger, J.D.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.359-372
    • /
    • 2004
  • Wind tunnel model studies were carried out to determine the wind load distribution on tributary areas near the gable-end of large, low-rise buildings with high pitch planar and curved roof shapes. Background pressure fluctuations on each tributary area are described by a series of uncorrelated modes given by the eigenvectors of the force covariance matrix. Analysis of eigenvalues shows that the dominant first mode contributes around 40% to the fluctuating pressures, and the eigenvector mode-shape generally follows the mean pressure distribution. The first mode contributes significantly to the fluctuating load effect, when its influence line is similar to the mode-shape. For such cases, the effective static pressure distribution closely follows the mean pressure distribution on the tributary area, and the quasi-static method would provide a good estimate of peak load effects.

Energy Absorbing Characteristics of Thin-Walled Members for Vehicles Having Various Section Shapes (차체구조용 박육부재의 단면형상변화에 따른 에너지흡수 특성)

  • 차천석;정진오;이길성;백경윤;양인영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.177-182
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a case of front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/min) was conducted by using UTM for form different types of members which have different cross section shapes; single hat, single cap, double cap, and double hat. The single hat shaped section member has the typical standard section, which the double hat shape section has a symmetry in the center to have more stiffness. As a result of the test, the energy absorbing characteristic was analyzed for different section shapes. It turned out that the change of section shape influence the absorbing energy, the mean collapse load and the maximum collapse load, and the relation between the change of section shape and the collapse mode.