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SHAPE OPERATOR OF SLANT
SUBMANIFOLDS IN SASAKIAN SPACE FORMS

Youncg Ho KiM, CHUL W00 LEE AND DAE WON YOON

ABSTRACT. In this article, we establish relations between the sec-
tional curvature and the shape operator and also between the k-
Ricci curvature and the shape operator for a slant submanifold in
a Sasakian space form of constant - sectional curvature with arbi-
trary codimension.

1. Introduction

Nash’s theorem enables us to view any Riemannian manifold as a sub-
manifold of Euclidean space. This gives us a natural motivation for the
study of submanifolds of Riemannian manifolds. In this case, we have in-
trinsic invariants as well as extrinsic invariants. Among extrinsic invari-
ants, the shape operator and the squared mean curvature are the most
important ones. Among the main intrinsic invariants, sectional, Ricci
and scalar curvatures are the well-known ones. Gauss-Bonnet Theorem,
Isoperimetric inequality and Chern-Lashof Theorem provide relations
between intrinsic invariants and extrinsic invariants for a submanifold
in a Euclidean space.

Recently, B. -Y. Chen ([5, 6]) established an inequality relating intrin-
sic quantities and extrinsic ones for submanifolds in a space form with
arbitrary codimension. In particular, in ([5]) he investigated a relation
between the sectional curvature and the shape operator for submani-
folds in real space forms. And, in ([6]) he established a sharp relation
between the k-Ricci curvature and the shape operator. On the other
hand, for the above mentioned contents K. Matsumoto, I. Mihai and
A. Oiaga ([7]) studied these relations of slant submanifolds in complex
space forms.
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In this paper, we study slant submanifolds of Sasakian space forms of
constant y-sectional curvature with arbitrary codimension and establish
relations between the sectional curvature and the shape operator and
also between the k-Ricci curvature and the shape operator for slant
submanifolds in Sasakian space forms.

2. Preliminaries

Let M be an odd-dimensional Riemannian manifold with (-,-) the
metric tensor satisfying

n€) =1, ¢*=-IT+n®¢ n(X)=(X,8),
<30X7 ‘PY> = (Xa Y> *U(X)H(Y)

Then (¢,&,1,(,)) is called the almost contact metric structure on M.
Let ® denote the fundamental 2-formin M given by ®(X,Y) = (X, cpY)
for all X,Y € TM, the set of vector fields of M. If & = dn, then M is
said to be a contact metric manifold. Moreover, if ¢ is a Killing vector
field with respect to ( ,), the contact metric structure is called a K-
contact structure. 1t is easy to prove that a contact metric manifold is
K-contact if and only if
(2.1) Vxt = —pX
for any X EEﬁ , Where V is the Levi-Civita connection of M. The
structure of M is said to be normal if [, @] + 2dn ® £ = 0, where [y, ¥
is the Nijenhuis torsion of p. A Sasakian manifold is a normal contact
metric manifold. In fact, an almost contact metric structure is Sasakian
if and only if _

(Vxp)Y = (X,Y){ —n(Y)X
for all vector fields X and Y. Every Sasakian manifold is a K-contact
manifold. ~ .

Given a Sasakian manifold M, a plane section 7 in T,M is called a
p-section if it is spanned by X and X, where X is a unit tangent vector
field orthogonal to . The sectional curvature K(m) of a p-section 7 is
called -sectional curvature. If a Sasakian manifold M has constant p-
sectignal curvature ¢, M is called a Sasakian-space-form and it is denoted
by M(c). For more details and background, refer to the reference [1].

Now let M be a submanifold immersed in (M, ¢, ¢, 7, (,)). We also
denote by ( ,) the induced metric on M. Let TM be the Lie algebra
of vector fields in M and T1M the set of all vector fields normal to
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M. We denote by h the second fundamental form of M and by A, the
Weingarten endomorphism associated with any v € T+ M. We put hi; =
(h(es,€;5), er) for any orthonormal vectors e; , e; € TM and e, € T+ M.
The mean curvature vector field H is defined by H = muaceh. Mis
said to be fotally geodesic if the second fundamental vanishes identically.
From now on, we assume that the dimension of M is n + 1 and that
of the ambient manifold M is 2m + 1 (m > 2). We also assume that
the structure vector field ¢ is tangent to M. Hence, if we denote by D
the orthogonal distribution to ¢ in 7'M, we have the orthogonal direct
decomposition of TM by TM = D & Span{¢}. For any X € TM, we
write pX = TX + NX, where TX(resp. NX) is the tangential (resp.
normal) component of pX. If M is a K-contact manifold, (2.1) gives

(2.2) h(X,8) = -NX
for any X in TM. Given a local orthonormal frame {e;,--- ,e,} of D,
we can define the squared norms of 7" and N by
n n
(2.3) ITI? =D (e, Te;)?  INIP = (es, Nej)?,
i,j=1 ij=1

respectively. It is easy to show that both || T|? and || N||? are independent
of the choice of the orthonormal frame. The submanifold M is said to
be invariant if N is identically zero, that is X € TM for any X € TM.
On the other hand M is said to be an anti-invariant submanifold if T
is identically zero, that is, X € T+M for any X € TM. For each
nonzero vector X tangent to M at a point p in M such that X is not
proportional to §,, we denote by #(X) the angle between X and T,M.
Then M is said to be slant if the angle 6(X) is a constant which is
independent of the choice of p € M and X € D, ([2]). The angle § of a
slant immersion is called the slant angle of the immersion. Invariant and
anti-invariant immersions are slant immersions with slant angle § = 0
and 6 = 7, respectively. A slant immersion which is neither invariant
nor anti-invariant is called proper. Also, a slant submanifold with the
slant angle 0 is called #-slant ([2, 4]). It is easily proved that a #-slant
submanifold M of an almost contact metric manifold M satisfies

n

(2.4) Z(ei, pe;)? = cos? 8
j=1
for any i = 1,2,--- ,n where {e1, -, en,£} is a local orthonormal frame

of TM (cf. [3]). On the other hand, the Gauss’ equation gives rise to
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the curvature tensor R of the submanifold M of a Sasakian space form
M (c) satisfies

(R(X,Y)2,W) =513

{<X, W><Y7 Z> - (Xv Z><Y7 W>}

+ 200N (Y, W) — (Y m(2)(X, W)
(2.5) + (X, Zn(Y)n(W) - (Y, Z)n(X)n(W)

+{Z, Y ) (pX, W) = (Z,0X) (pY, W)

+ 2(X, oY) pZ, W)}

+ (R(X, W), (Y, Z)) — (h(X, Z), (Y, W))
for any X,Y,Z, W € TM.

For an orthonormal basis {e1,--,en+1} of the tangent space T,M,
p € M, the scalar curvature 7 at p is defined by

(2.6) T=> K(eNey),

1<j

where K (e;\e;) denotes the sectional curvature of M associated with the
plane section spanned by e; and e;. In particular, if we put en+1 = &p,
then (2.6) implies

n n
(2.7) 2r =) K(eines)+2Y K(e AE).

i#j i=1
From (2.3), (2.5) and (2.7) we obtain the following relationship between
the scalar curvature and the mean curvature of M,

c+3 3(c—-1)
4

(2.8) 2r = (n+ 12| H|? - |A]? +n(n + 1)T +2n+ (T2

Suppose L is a k-plane section of T,M and X a unit vector in L. We

choose an orthonormal basis {e1, - ,ex} of L such that e; = X. Define
the Ricci curvature Ricy, of L at X by
(2.9) Ricr.(X) = K19 + Kiz+ -+ Ky,

where K;; denotes the sectional curvature of the 2-plane section spanned
by e; and e;. We simply call such a curvature a k-Ricci curvature. The
scalar curvature 7 of the k-plane section L is given by

(2.10) (D)= > K.

1<i<ji<k
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Suppose L is a k-plane section of D, and X a unit vector in L. The
scalar curvature 72 of the k-plane section L is given by

(2.11) ()= > K

1<i<j<k
For each point p € M, we put
infp K (p) = inf{K(7) : 7 is a plane section in Dp}.

For each integer k (2 < k < n) the Riemannian invariants 6}, and 62 on
an n-dimensional Riemannian manifold M are defined by

(2.12) Or(p) = inf Ricr(X), pe€ M,

k—1LX

where L runs over all k-plane sections in T,M and X runs over unit
vector in L, and

(2.13) 00 (p) =

k—lgl)f{"RlCL(X)’ pEM,

where L runs over all £-plane sections in Dy, and X runs over unit vector
in L, respectively. For a submanifold M in a Riemannian manifold, the
relative £-null space of M at a point p € M is defined by

Ne(p) ={X € Dp| h(X,Y)=0 forall Y € D,}.

3. Sectional curvature and shape operator

B. -Y. Chen ([5]) established a relation between the sectional curva-
ture and the shape operator for submanifolds in real space forms. Also,
K. Matsumoto, I. Mihai and A. Oiaga ([7]) have recently investigated
these relations for slant submanifolds into complex space forms. We
prove a similar inequality for an (n + 1)-dimensional slant submanifold
M into a (2m + 1)-dimensional Sasakian space form M (¢) of constant
yp-sectional curvature c.

THEOREM 3.1. Let x : M — M/(c) be an isometric immersion of an
(n + 1)-dimensional 0-slant submanifold M into a (2m + 1)-dimensional
Sasakian space form M (¢) of constant p-sectional curvature ¢ whose
structure vector field £ is tangent to M. If there exist a point p € M

and a number b > Cj’l'—g + 43((2:11)) cos? @ such that infp K(p) = K > b at
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p. Then the shape operator at the mean curvature vector satisfies

n—1 c+3 3(c—-1)
n {b— 4 4n-1)

(3.1) Ay > cos20}In at p,

where I,, denotes the identity map in D, which is naturally identified

with an (n + 1) X (n + 1)-matrix (16’ 8)

Proof. Assume that M is a slant submanifold in M (¢). Let pe M
and a number b > % + 3e=l) 00529 such that K > b at p. Choose

4(n—1)
an orthonormal basis {e1, -« ,ent1, - ,€2m+1} at p such that e, =
€, eny2 is parallel to the mean curvature vector H and ej, - ,en41

diagonalize the shape operator A, 2. Then we have

agt 0 O ... 0 O
0 a2 0 .. 0 0
0 az ... 0 0
(32) An+2 = . . : .. . o )
0O 0 O a, O
0 0 O 0 O
n+1

A= (h), D (hR) =0, 1<ij<n+1, n+3<r<2m+Ll.

We put u;; = uj; = a;a;. From (2.5) we get
_c+3 3(c-1)

ui; > b 1 (ei, pe;)?
(3.3) 2m+1
= > {nRy; - ()%, 1<4,j<n
r=n+3

We need the following lemmas in order to complete the proof of the
theorem.

LEMMA 3.2. The following statements hold.
(1) For any fixedi € {1,--- ,n}, we have 2oz ij = (n—1){b— o3

ﬂ%——%coszﬁ}.
(2 )um #0 fori#je{l,---,n}.

(3) For distinct i, j,k € {1,2,--- ,n}, we have a? = uiju,-ku;kl.
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Proof. Together with (2.4), (3.2) and (3.3), we get

E uij

3(c—1 2m+1
— 4((;_1)) 00520} —Z{

J#i
c+3
> (n—1)4b—
> - 0o <
c+3
=(n—1){b—
(- {o- %

r=n+3% i itj
3(6 _ 2m+1 n
— cos 0} Z Z
4(7’1 N r=n+31,j=1

which yields statement (1).
For statement (2), if u;; =0 for i # j, then a; =0 or a; = 0. a; =0
implies that u; = 0 for any i # ¢. Hence, }_,, ui+ = 0 which contradicts

the statement (1).

(3) follows from w;ju;, = a?ajak = afujk.

We put Sy ={B C {1,--- ,n}:
n]\B.

LEMMA 3.3. For a fixed k, 1 < k < [3], and each B € Sk, we have

by B = {1, -

Z Z ujt > (n— k)k{b— ¢ + 5 4?()20:]:))k cos? 8}.

j€BteB

Proof. Without loss of generality, we may assume B = {1,---

From (3.3) together with the last equation of (3.2) we find

ZZW

JjEBteB

c+3  3(c—-1)

. 2
T

k)k{b—

2m+1 n+1

Zzz{hhl} 50}

r=n+3 j=1 t=k+1
c+3  3(c-1)

= (n—k)k{b - —— - 4(n_k)kcos20}
2m+1 k  ntl k
+ 300 D0 (m)P+ ) ()%,
r=n+3 j=1t=k+1 7=1

which implies the lemma.

LEMMA 3.4. For any 1 <i # j <n, we have u;; > 0.

h:z Z h;] - Z(hZ])2

69

O

|B| = k}. For any B € Sy we denote

k).
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Proof. Assume uj, < 0. Then, by statement (3) of Lemma 3.2, we
get uyuy, < 0 for 1 < 4 < n. Without loss of generality, we may assume

(3.4) U12, "+ UL Y4 )ny " s U(n—1)n > 0
UL(141)y """ Ulny Uy * 5 U < O

for some [2H] <1 <n-1.

If I =n — 1, then uy(p) + ugmy +++* + Up-1)n < 0 which contradicts
to statement (1) of Lemma 3.2. Thus, [ < n — 1. From statement (3) of
Lemma 3.2, we get
(3.5) a2 = dinlitn g

Ust
where 2 < i <landl+1<t¢t<n-1 By (34) and (3.5), we have
uis < 0 which implies

I n !l n-1 l n
DD wa=> ) up+ Y um+ » un<o0.
i=1

=1 t=I41 1=2 t=[+1 t=l+1

This contradicts to Lemma 3.3. |

Now, we return to the proof of Theorem 3.1. From Lemma 3.4, it
follows that ai,---,a, are of the same sign. Assume a; > 0 for all
j €{1,---,n}. Then from the statement (1) of Lemma 3.2, we get

ain|| H|| - af = ai(ar + -+ + an) — ¢}

= a¢ZCLj = Zaiaj = Zuij
i#] i i
c+3 3(c-1) ,
> (n— - - .
>(n 1){b 1 (n=1) cos”

This inequality implies that
n—1 c+3 3(c-1) ,
|| H - — ,
a;l| H|| > - {b 1 4(n_l)cos 6

and consequently (3.1) is established. This completes the proof of the
theorem. [l

Let I, be the same matrix in Theorem 3.1. Then, we have

COROLLARY 3.5. Let M be an isometric immersion of an (n + 1)-
dimensional anti-invariant submanifold of a Sasakian space form M (c) of
constant p-sectional curvature ¢ whose structure vector field £ is tangent
to M. If there exist a point p € M and a number b > %’—3 such that
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infpK(p) = K > b at p. Then the shape operator at the mean curvature

vector satisfies ) 5
Ay > = {b— ¢t }In.
n 4

COROLLARY 3.6. Let M be an isometric immersion of an (n + 1)-

dimensional invariant submanifold of a Sasakian space form M (¢) of
constant p-sectional curvature ¢ whose structure vector field £ is tangent

to M. If there exist a point p € M and a number b > Cf’ + 2((2:11))

that infpK(p) = K > b at p. Then the shape operator at the mean
curvature vector satisfies

n—1 c+3 3(c-1)
Au > = {b 4 “4(n—1)}1”'

such

4. k-Ricci curvature and shape operator

In this section, we establish a relation between the k-Ricci curvature
and the shape operator for an (n + 1)-dimensional slant submanifold
M into a (2m + 1)-dimensional Sasakian space form M (c) of constant
p-sectional curvature c.

THEOREM 4.1. Letz : M — M(c) be an isometric immersion of an
(n + 1)-dimensional 0-slant submanifold M into a (2m + 1)-dimensional
Sasakian space form M (c) of constant p-sectional curvature ¢ whose
structure vector field £ is tangent to M. Then, for any integer k, 2 <
k < n, and any point p € M, we have

(1) If 6P (p) # <2 + 2((2:11)) cos? @, then shape operator at the mean
curvature vector satisfies

@y An> " opm - R - T

where I, denotes the identity map of D, identified with the (n + 1) x

cos29}1n at p,

. (In 0O
(n + 1)-matrix (O o)
(2) IF 6P (p) = =3 + 2((:;11)) cos? 0, then A i > 0 at p.

(3) A unit vector X € D, satisfies

(4.2) AHX:ngl{(?E(P)—CZS—Z((Z:Il)) cos29}X

if and only if P (p) = <¥3 + 2((5:11)) cos?0 and X € N¢(p).
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Proof. Let {e1, - ,en,ent1 = £} be an orthonormal basis of T,M.
Denote by Lj,...;, the k-plane section spanned by e; ,--- ,e; in D,. It
follows from (2.9) and (2.10) that

1 :
(43) TD(Lilmik) = 5 Z RZCLilmik (ei),
ie{ily"'yik}
1
(4.4) PO =7 D, TP

(k—2) 1<ii << <1
Combining (2.14), (4.3) and (4.4), we find

n(n—1
(45) ) > M Vgp()
From the equation of Gauss (2.5) for X = Z = ¢;,Y = W = ¢;, by
summing over {1,2,--- ,n} with respect to ¢ and j (z # j), we obtain
c+3 3(c-1)

@8) w2l HIP = 20"+ || AP~ nin - T2 - 2Dy
We choose an orthonormal basis {e1,-- ,en, en41 =&, €nt2, ** , €2m+1}
at p such that e, o is parallel to the mean curvature vector H(p) and
e1, -+ ,enpy1 = & diagonalize the shape operator A,;2. Then we have
the relations (3.2) and (3.3). From (4.6) we get
(4.7)

2m+1 n

c+3 3
2||H||2—27'D+Za + 3 Y (h)*-n(n-1) (e )||T||2
r=n+31i,j=1

On the other hand, since

OSZ(ai—aj n—l)Za _22‘1’0’1’

1<J 1<j
which implies

(4.8) n?|| H||? = (z:a,)2 Za +2Za,a]<n2a

1<j
We have from (4.7) and (4.8)
(c+3) 3(c—1)

T2
' i

(49) n?|| H|? 2 277 + || HI? ~n(n - 1)

or equivalently
27D c+3 3(c-1)

(4.10) IIHH2Zn(n_1)‘ 4 dn(n-1)

lealie
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From (4.5) and (4.10), we have

c+3  3(c-1)

| Hil*(p) > 62 (p) - T2

4 dn(n-— 1)
(4.11) ~
= ef(p) - 613 — j((rcz—ll)) cos? 6.

This show that H(p) = 0 may occur only when 62 (p) < etd 4y ZEZ:II))

cos? §. Consequently, if H(p) = 0, statements (1) and (2) hold automat-
ically. Therefore, without loss of generality, we may assume H (p) #0.
From the Gauss’ equation we get

2m+1
c+3 3c-1 S
(4.12) asa; = Kyj — ya (4 )e,,goe] E {hih; )}
r=n-+3

By (4.12) we have

ai(ai, + -+ +ay,)

k
(k - 121(c +3) 3((:4— 1) > tet e

= RicLlizwik (61) -
(4.13)

2m+1
Z Z { :J L] }
r=n+3 j=2
which yields
ay(az +--- +ay)

- (niz) Z RicLliz-“ik (e1)

(4.14) k—2/ 2<iz<-<ig<n
n 2m+1 n
(n—1)(c+3) 3(c—-1 .
- 4( - 4 ) Z(ela QOCj)Z + Z Z( lj)z.
.722 r=n+3 ]:1

From (2.4), (2.14) and (4.14) we have

(4.15) aj(ap+ -+ +an) > (n— 1){6’,?(1)) — CZ3 - Z((vcz:i)) coszﬂ}.
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Then
(4.16)
ar(ar + - +an) = a2 +ay(as + -+ ap)

Za%-l—(n—l){@,?(p)— 61—3 - 2((;:?) c0520}

> =00 - <52 - 2D o).

Similar inequalities hold when 1 were replaced by j € {2,--- ,n}. Hence,
we have

aj(a1+...+an)
c+3 3lc—-1 .
which yields

n—1 c+3 3(c—1)
Ag> 9P (v) — - 2901,
HZ— {k(p) 1 4:(n_l)COS }n
The equality does not hold because H(p) # 0. Thus, (4.1) is valid. The
statement (2) is obvious.

(3) Let X be a unit vector in D, satisfying (4.2). By (4.16) and
(4.14) one has a; = 0 and hj; = 0, for all j € {1,--- ,n},r € {n +
3,-++,2m+ 1}, respectively. It follows that 62 (p) = <52 + %Cl__—ll—)) cos? 6
and X € N¢(p). The converse is clear. This completes the proof of the
theorem. a

COROLLARY 4.2. Let z : M — M(c) be an isometric immersion
of an (n + 1)-dimensional invariant submanifold M into a (2m + 1)-
dimensional Sasakian space form M (¢) of constant p-sectional curvature
¢ whose structure vector field £ is tangent to M. Then, for any integer
k, 2 < k < n, and any point p € M, we have

(1) If 6P (p) # <2 + i’((;:ll)), then shape operator at the mean curva-

ture vector satisfies

n—1{p c+3 3(c—1)
Ag> - {Gk(p) y _4(n—1)}I" at p,

where I, denotes the identity map of D, identified with (IO" 8)

(2) IFOP(p) = <42 + 23 then A y > 0 at p.
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(3) A unit vector X € D, satisfies

e =T

if and only if 6P (p) = <52 + 2°=1 and X € Ne(p).
(4)

Ap= n‘l{eD(p)- 623—‘3((;:3

if and only if p is a totally geodesic point.

}In at p

COROLLARY 4.3. Let x : M — M(c) be an isometric immersion of
an (n + 1)-dimensional anti-invariant submanifold M into a (2m + 1)-

dimensional Sasakian space form 1@( c) of constant p-sectional curvature
¢ whose structure vector field £ is tangent to M. Then, for any integer
k, 2 <k <n, and any point p € M, we have

(1) If 6P (p) # <§3, then shape operator at the mean curvature vector

satisfies
-1 3
An>"= {%(p)—ﬁ }In at p,

where I, denotes the identity map of D, identified with <I” 0).

0 0
(2) If 62 (p) = <22 then A y > 0 at p.
(3) A unit vector X € D, satisfies

n—1 c+3
A = 6P (p) — X
X - { x (p) 1 }

if and only if 9P (p) = X2 and X € N¢(p).
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