• 제목/요약/키워드: maximum tangential

Search Result 129, Processing Time 0.024 seconds

Comparative study of analytical models of single-cell tornado vortices based on simulation data with different swirl ratios

  • Han Zhang;Hao Wang;Zhenqing Liu;Zidong Xu;Boo Cheong Khoo;Changqing Du
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.161-174
    • /
    • 2023
  • The analytical model of tornado vortices plays an essential role in tornado wind description and tornado-resistant design of civil structures. However, there is still a lack of guidance for the selection and application of tornado analytical models since they are different from each other. For single-cell tornado vortices, this study conducts a comparative study on the velocity characteristics of the analytical models based on numerically simulated tornado-like vortices (TLV). The single-cell stage TLV is first generated by Large-eddy simulations (LES). The spatial distribution of the three-dimensional mean velocity of the typical analytical tornado models is then investigated by comparison to the TLV with different swirl ratios. Finally, key parameters are given as functions of swirl ratio for the direct application of analytical tornado models to generate full-scale tornado wind field. Results show that the height of the maximum radial mean velocity is more appropriate to be defined as the boundary layer thickness of the TLV than the height of the maximum tangential mean velocity. The TLV velocity within the boundary layer can be well estimated by the analytical model. Simple fitted results show that the full-scale maximum radial and tangential mean velocity increase linearly with the swirl ratio, while the radius and height corresponding to the position of these two velocities decrease non-linearly with the swirl ratio.

A numerical analysis and experimental study on the prediction of spray characteristics (분무특성 예측을 위한 이론적 접근과 실험적 연구)

  • Yoon, S.J.;Cho, D.J.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.1-13
    • /
    • 1998
  • A theoretical and experimental study was carried out to predict the drop size distribution of the pressure swirl atomizer. Various analytical methods using the Kelvin-Helmholtz instability theory were tried to examine the wave growth on cylindrical liquid sheets. Cylinderical liquid sheets were extended to the case with the conical sheets. Perturbations due to tangential motion as well as longitudinal one were taken into account. And it was assumed that the breakup occurs when amplitude ratio exceeds exp(12), drop sizes were predicted only by theoretical approach. Drop size distribution was obtained by using maximum entropy formalism. Seven constraints in the form of the definition of mean diameter were used in this formulation in order to avoid the difficulties of estimating source terms. In this study $D_{10}$ only was introduced into the formulation as a constraint. The predicted drop size and drop size distribution agreed well with the measured data.

  • PDF

Experimental study of the air emission effect in the tangential and the multi-stage spiral inlet (접선식 유입구와 다단식 나선 유입구의 공기 배출 효과에 관한 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • Recently, urban inundation was frequently occurred due to the intensive rainfall exceeding marginal capacity of the flood control facility. Furthermore, needs for the underground storage facilities to mitigate urban flood are increasing according to rapidly accelerating urbanization. Thus, in this study, drainage efficiency in drain tunnel connecting to underground storage was investigated from the air-core measurements in the drop shaft against two types of inlet structure. In case of the spiral inlet, the multi-stage structure is introduced at the bottom of the inlet to improve the vortex induction effect at low inflow discharge (multi-stage spiral inlet). The average cross-sectional area of the air-core in the multi-stage spiral inlet is 10% larger than the tangential inlet, and show the highly air emission effect and the highly inflow efficiency at the high inflow discharge. In case of the tangential inlets, the air emission effect decreased after exceeding the maximum inflow discharge, which is required to maintain the inherent performance of the tangential inlet. From the measurements, the empirical formula for the cross-sectional area of the air-core according to locations inside the drop shaft was proposed in order to provide the experimental data available for the inlet model used in experiments.

A Study on the Three-Dimensional Turbulent Flour Characteristics of a Small-sized Axial Fan at the Maximum Flowrate Region (최대유량역에서 소형 축류 홴의 3차원 난류유동 특성에 관한 연구)

  • Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.25-33
    • /
    • 2000
  • This study represents three-dimensional turbulent flow characteristics around an axial fan measured at the operating point ${\varphi}=0.32$, which is equivalent to the maximum flowrate region, by using three-dimensional fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSA's, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fog is used for laser particles in this study. Mean velocity profiles around an axial fan along the downstream radial distance show that the streamwise and the tangential components exist as a predominant velocity and have the maximum value at the radial distance ratio 0.8, while the radial component has a small scale distribution and its flow direction is inward except a part of blade tip. The turbulent intensity profiles show that the radial component exists the most greatly. And also the turbulent kinetic energy shows about 60% as a maximum value at the radial distance ratio 0.9. Moreover, the Reynolds shear stresses do not exist at upstream flow, but the streamwise and the radial components of them show about 20% as a maximum value at the radial distance ratio 0.9 at downstream flow.

  • PDF

The Irradiated Lung Volume in Tangential Fields for the Treatment of a Breast (유방암의 접선 조사시 피폭 폐용적)

  • Oh Young Taek;Kim Juree;Kang Haejin;Sohn Jeong Hye;Kang Seung Hee;Chun Mison
    • Radiation Oncology Journal
    • /
    • v.15 no.2
    • /
    • pp.137-143
    • /
    • 1997
  • Purpose : Radiation pneumonitis is one of the complications caused by radiation therapy that includes a Portion of the lung tissue. The severity of radiation induced pulmonary dysfunction depends on the irradiated lung volume, total dose, dose rate and underlying Pulmonary function. It also depends on whether chemotherapy is done or not. The irradiated lung volume is the most important factor to predict the pulmonary dysfunction in breast cancer Patients following radiation therapy. There are some data that show the irradiated lung volume measured from CT scans as a part of treatment Planning with the tangential beams. But such data have not been reported in Korea. We planned to evaluate the irradiated lung volume quantitatively using CT scans for the breast tangential field and search for useful factors that could Predict the irradiated lung volume Materials and Methods : The lung volume was measured for 25 patients with breast cancer irradiated with tangential field from Jan.1995 to Aug.1996. Parameters that can predict the irradiated lung volume included; (1) the peruendicular distance from the Posterior tangential edge to the posterior part of the anterior chest wall at the center of the field (CLD) ; (2) the maximum perpendicular distance from the posterior tangential field edge to the posterior Part of the anterior chest wall (MLD) ; (3) the greatest perpendicular distance from the Posterior tangential edge to the posterior part of anterior chest wall on CT image at the center of the longitudinal field (GPD) ; (4) the length of the longitudinal field (L). The irradiated lung volume(RV), the entire both lung volume(EV) and the ipsilateral lung volume(IV) were measured using dose volume histogram. The relationship between the irradiated lung volume and predictors was evaluated by regression analysis. Results :The RV is 61-279cc (mean 170cc), the RV/EV is $2.9-13.0\%\;(mean\;5.8\%)$ and the RV/IV is $4.9-29.0\%\;(mean\;12.2\%)$. The CLD, the MLD and the GPD ave 1.9-3.3cm, 1.9-3.3cm and 1.4-3.1cm respectively. The significant relations between the irradiated lung volume such as RV. RV/EV, RV/IV and parameters such as CLD, MLD, GPO, L. $CLD\timesL,\;MLD\timesL\;and\;GPD\timesL$ are not found with little variances in parameters. The RV/IV of the left breast irradiation is significantly larger than that of the right but the RV/EVS do not show the differences. There is no symptomatic radiation pneumonitis at least during 6 months follow up. Conclusion : The significant relationship between the irradiated lung volume and predictors is not found with little variation on parameters. The irradiated lung volume in the tangential held is liss than $10\%$ of entire lung volume when CLO is less than 3cm. The RV/IV of the left tangential field is larger than that of the right but there was no significant differences in RV/EVS. Symptomatic radiation pneumonitis has not occurred during minimum 6 months follow up.

  • PDF

Influence of a community of buildings on tornadic wind fields

  • Li, Zhi;Honerkamp, Ryan;Yan, Guirong;Feng, Ruoqiang
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.165-180
    • /
    • 2020
  • To determine tornadic wind loads, the wind pressure, forces and moments induced by tornadoes on civil structures have been studied. However, in most previous studies, only the individual building of interest was included in the wind field, which may be suitable to simulate the case where a tornado strikes rural areas. The statistical data has indicated that tornadoes induce more significant fatalities and property loss when they attack densely populated areas. To simulate this case, all buildings in the community of interest should be included in the wind field. However, this has been rarely studied. To bridge this research gap, this study will systematically investigate the influence of a community of buildings on tornadic wind fields by modeling all buildings in the community into the wind field (designated as "the Community case under tornadic winds"). For comparison, the case in which only a single building is included in the tornadic wind field (designated as "the Single-building case under tornadic winds") and the case where a community of buildings are included in the equivalent straight-line wind field (designated as "the Community case under straight-line winds") are also simulated. The results demonstrate that the presence of a number of buildings completely destroys the pattern of regular circular strips in the distribution of tangential velocity and pressure on horizontal planes. Above the roof height, the maximum tangential velocity is lower in the Community case under tornadic winds than that in the Single-building case under tornadic winds because of the higher surface friction in the Community case; below the roof height, greater tangential velocity and pressure are observed in the Community case under tornadic wind fields, and more unfavorable conditions are observed in the Community case under tornadic winds than under the equivalent straight-line winds.

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials

  • Fakoor, Mahdi;Rafiee, Roham;Zare, Shahab
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.

A Study on the Mechanical Change of Emulsion-Treated Hair by Color

  • Ko, Hee-Ja;Park, Jang-Soon
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.127-133
    • /
    • 2022
  • With the increasing interest in the expression of individuality and appearance of modern people, it is time to conduct research and development of novel hair coloring from various angles. Therefore, taking into account the order of discoloration of hair pigments, we selected a creative and novel emulsion as a novel material for hair coloring, rather than a cosmetic material such as hot water extract using natural products dealt with in previous studies, commercially available hair manicure, and oxidation hair dye for hair. Thus, the change in tensile strength and elongation of hair samples by color was studied. As a result of the study, hair with green emulsion paint had a significantly higher maximum load, maximum stress, maximum elongation and breaking load, breaking stress, breaking elongation values are shown. Maximum in terms of modulus, green emulsion applied hair and the control group were higher in the 0-15s strain and 15-145s sections, respectively, and the tangential modulus value was much higher in the control group than the experimental group hairs in all the 0-145s sections. This study, which analyzes the dynamic changes of hair samples that extend the daily color gamut, will greatly contribute to the development of innovative hair coloring materials in the research and production of hair beauty works, and it is judged that it will also contribute to the development of the beauty industry.

Stress Analysis of the Finite Plates with Rectangular Inserts (直4角 揷入物 로 充전된 有限平板 의 應力解析)

  • 조선휘;김기식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.361-366
    • /
    • 1982
  • This paper attempts to predict the stress concentration around the corner of rectangular inserts of different material of mechanical properties from the base material of the finite rectangular plate. The problem is analyzed through the FEM and photo-elastic experiment with the inclination angle of the insert as variable parameters. According to the experiments and the numerical analysis, the maximum stress concentration occurs at the point of tangential discontinuity of a insert. When the lain insert or opening was so inclined that the distance from the free end of the plate to a corner became minimum, the maximum stress concentration factor was found.

A Study on the Fatigue Crack Growth of Cracks in Mechanical Joints (기계적 체결부 균열의 피로균열성장에 관한 연구)

  • 허성필;양원호;정기현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.187-194
    • /
    • 2002
  • It has been reported that cracks in mechanical joints is generally under mixed-mode and there is critical inclined angle at which mode I stress intensity factor becomes maximum. The crack propagates in arbitrary direction and thus the prediction of crack growth path is needed to provide against crack propagation or examine safety. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed far horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using stress intensity factor obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.