DOI QR코드

DOI QR Code

Comparative study of analytical models of single-cell tornado vortices based on simulation data with different swirl ratios

  • Han Zhang (Key Laboratory of Concrete & Prestressed Concrete Structures of Ministry of Education, Southeast University) ;
  • Hao Wang (Key Laboratory of Concrete & Prestressed Concrete Structures of Ministry of Education, Southeast University) ;
  • Zhenqing Liu (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology) ;
  • Zidong Xu (Key Laboratory of Concrete & Prestressed Concrete Structures of Ministry of Education, Southeast University) ;
  • Boo Cheong Khoo (Department of Mechanical Engineering, National University of Singapore) ;
  • Changqing Du (State Grid Jiangsu Electric Power Co., Ltd)
  • Received : 2022.11.08
  • Accepted : 2023.03.06
  • Published : 2023.03.25

Abstract

The analytical model of tornado vortices plays an essential role in tornado wind description and tornado-resistant design of civil structures. However, there is still a lack of guidance for the selection and application of tornado analytical models since they are different from each other. For single-cell tornado vortices, this study conducts a comparative study on the velocity characteristics of the analytical models based on numerically simulated tornado-like vortices (TLV). The single-cell stage TLV is first generated by Large-eddy simulations (LES). The spatial distribution of the three-dimensional mean velocity of the typical analytical tornado models is then investigated by comparison to the TLV with different swirl ratios. Finally, key parameters are given as functions of swirl ratio for the direct application of analytical tornado models to generate full-scale tornado wind field. Results show that the height of the maximum radial mean velocity is more appropriate to be defined as the boundary layer thickness of the TLV than the height of the maximum tangential mean velocity. The TLV velocity within the boundary layer can be well estimated by the analytical model. Simple fitted results show that the full-scale maximum radial and tangential mean velocity increase linearly with the swirl ratio, while the radius and height corresponding to the position of these two velocities decrease non-linearly with the swirl ratio.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (51978155, 52208481), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_0212), the Program of State Grid Jiangsu Electric Power Co., Ltd. (SGJSHY00XMJS2200187), and the China Scholarship Council (202106090213).

References

  1. Alipour, A., Sarkar, P., Dikshit, S., Razavi, A. and Jafari, M. (2020), "Analytical approach to characterize tornado-induced loads on lattice structures", J. Struct. Eng., 146, 04020108. https://doi.org/10.1061/(asce)st.1943-541x.0002660.
  2. Altalmas, A. and El Damatty, A. (2014), "Finite element modelling of self-supported transmission lines under tornado loading", Wind Struct., 18, 473-495. https://doi.org/10.12989/was.2014.18.5.473. ANSYS. Inc, (2018). Fluent19.2 Theory Guide.
  3. Baker, C.J. and Sterling, M. (2017), "Modelling wind fields and debris flight in tornadoes", J. Wind Eng. Ind. Aerod., 168, 312-321. https://doi.org/10.1016/j.jweia.2017.06.017.
  4. Baker, C.J. and Sterling, M. (2018), "The calculation of train stability in tornado winds", J. Wind Eng. Ind. Aerod., 176, 158-165. https://doi.org/10.1016/j.jweia.2018.03.022.
  5. Baker, G.L. (1981), Boundary Layers in Laminar Vortex Flows, Purdue University.
  6. Baker, G.L. and Church, C.R. (1979), "Measurements of core radii and peak velocities in modeled atmospheric vortices", J. Atmos. Sci., 36, 2413-2424. https://doi.org/10.1175/15200469(1979)036%3C2413:MOCRAP%3E2.0.CO;2.
  7. Bezabeh, M.A., Gairola, A., Bitsuamlak, G.T., Popovski, M. and Tesfamariam, S. (2018), "Structural performance of multi-story mass-timber buildings under tornado-like wind field", Eng. Struct., 177, 519-539. https://doi.org/10.1016/j.engstruct.2018.07.079.
  8. Cao, J., Ren, S., Cao, S. and Ge, Y. (2019), "Physical simulations on wind loading characteristics of streamlined bridge decks under tornado-like vortices", J. Wind Eng. Ind. Aerod., 189, 56-70. https://doi.org/10.1016/j.jweia.2019.03.019.
  9. Cao, S., Wang, J., Cao, J., Zhao, L. and Chen, X. (2015), "Experimental study of wind pressures acting on a cooling tower exposed to stationary tornado-like vortices", J. Wind Eng. Ind. Aerod., 145, 75-86. https://doi.org/10.1016/j.jweia.2015.06.004.
  10. Cao, S., Wang, M. and Cao, J. (2018a), "Numerical study of wind pressure on low-rise buildings induced by tornado-like flows", J. Wind Eng. Ind. Aerod., 183, 214-222. https://doi.org/10.1016/j.jweia.2018.10.023.
  11. Cao, S., Wang, M., Zhu, J., Cao, J., Tamura, T. and Yang, Q. (2018b), "Numerical investigation of effects of rotating downdraft on tornado-like-vortex characteristics", Wind Struct., 26, 115-128. https://doi.org/10.12989/was.2018.26.3.115.
  12. Davies-Jones, R. (2015), "A review of supercell and tornado dynamics", Atmospheric Res., 158-159, 274-291. https://doi.org/10.1016/j.atmosres.2014.04.007.
  13. Davies-Jones, R., Trapp, R.J. and Bluestein, H.B. (2001), "Tornadoes and tornadic storms", Meteorol. Monogr., 50, 167-222. https://doi.org/10.1175/0065-9401-28.50.167.
  14. Fujita, T.T. (1978). Workbook of Tornadoes and High Winds for Engineering Applications. University of Chicago, Chicago, Illinois, USA.
  15. Haan, F.L., Balaramudu, V.K. and Sarkar, P.P. (2007), "Tornado-induced wind loads on a low-rise building", J. Struct. Eng., 136, 106-116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000093.
  16. Haan, F.L., Sarkar, P.P., Gallus, W.A. (2008), "Design, construction and performance of a large tornado simulator for wind engineering applications", Eng. Struct., 30, 1146-1159. https://doi.org/10.1016/j.engstruct.2007.07.010.
  17. Hamada, A. and El Damatty, A.A. (2016), "Behaviour of transmission line conductors under tornado wind", Wind Struct., 22, 369-391. https://doi.org/10.12989/was.2016.22.3.369.
  18. Hangan, H. and Kim, J. (2008), "Swirl ratio effects on tornado vortices in relation to the Fujita scale", Wind Struct., 11, 291-302. https://doi.org/10.12989/was.2008.11.4.291.
  19. Hao, J. and Wu, T. (2020), "Numerical analysis of a long-span bridge response to tornado-like winds", Wind Struct., 31, 459-472. https://doi.org/10.12989/was.2020.31.5.459.
  20. Harvey, B., Quinlan, K. and Chokshi, N. (2013), "Design-basis hurricane winds and missiles for nuclear power plants", 22nd Conference on Structural Mechanics in Reactor Technology, San Francisco, California, August.
  21. Hou, F. and Sarkar, P.P. (2020), "Aeroelastic model tests to study tall building vibration in boundary-layer and tornado winds", Eng. Struct., 207, 110259. https://doi.org/10.1016/j.engstruct.2020.110259.
  22. Huang, Q., Jiang, W.J. and Hong, H.P. (2021), "Development of a simple equivalent tornado wind profile for structural design and evaluation", J. Wind Eng. Ind. Aerod., 213, 104602. https://doi.org/10.1016/j.jweia.2021.104602.
  23. Ishihara, T. and Liu, Z., (2014), "Numerical study on dynamics of a tornado-like vortex with touching down by using the LES turbulence model", Wind Struct., 19, 89-111. https://doi.org/10.12989/was.2014.19.1.089.
  24. Kim, Y.C. and Matsui, M. (2017), "Analytical and empirical models of tornado vortices: A comparative study", J. Wind Eng. Ind. Aerod., 171, 230-247. https://doi.org/10.1016/j.jweia.2017.10.009.
  25. Kuai, L., Haan Jr, F.L., Gallus Jr, W.A. and Sarkar, P.P. (2008), "CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements", Wind Struct., 11, 75-96. https://doi.org/10.12989/was.2008.11.2.075.
  26. Le, V. and Caracoglia, L., (2020), "Life-cycle cost analysis of a point-like structure subjected to tornadic wind loads", J. Struct. Eng., 146, 04019194. https://doi.org/10.1061/(asce)st.1943-541x.0002480.
  27. Leslie, L.M. and Holland, G. (1995), "On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles", Meteorol. Atmos. Phys., 56, 101-110. https://doi.org/10.1007/BF01022523.
  28. Lewellen, W., Lewellen, D. and Sykes, R. (1997), "Large-eddy simulation of a tornado's interaction with the surface", J. Atmos. Sci. 54, 581-605. https://doi.org/10.1175/15200469(1997)054%3C0581:LESOAT%3E2.0.CO;2.
  29. Lilly, D.K. (1992), "A proposed modification of the Germano subgrid-scale closure method", Phys. Fluid. A Fluid Dyn., 4, 633-635. https://doi.org/10.1063/1.858280.
  30. Liu, Z. and Ishihara, T. (2015a), "Numerical study of turbulent flow fields and the similarity of tornado vortices using large-eddy simulations", J. Wind Eng. Ind. Aerod., 145, 42-60. https://doi.org/10.1016/j.jweia.2015.05.008.
  31. Liu, Z. and Ishihara, T. (2015b), "A study of tornado induced mean aerodynamic forces on a gable-roofed building by the large eddy simulations", J. Wind Eng. Ind. Aerod., 146, 39-50. https://doi.org/10.1016/j.jweia.2015.08.002.
  32. Liu, Z., Zhang, C. and Ishihara, T. (2018), "Numerical study of the wind loads on a cooling tower by a stationary tornado-like vortex through LES", J. Fluid. Struct., 81, 656-672. https://doi.org/10.1016/j.jfluidstructs.2018.06.001.
  33. Luo, J., Liang, D. and Weiss, C. (2015), "Reconstruction of a near-surface tornado wind field from observed building damage", Wind Struct., 20, 389-404. https://doi.org/10.12989/was.2015.20.3.389.
  34. Matsui, M. and Tamura, Y. (2009), "Influence of swirl ratio and incident flow conditions on generation of tornado-like vortex", 5th European and African Conference on Wind Engineering, Florence, Italy, July.
  35. Mishra, A., James, D. and Letchford, C. (2008), "Physical simulation of a single-celled tornado-like vortex, Part B: Wind loading on a cubical model", J. Wind Eng. Ind. Aerod., 96, 1258-1273. https://doi.org/10.1016/j.jweia.2008.02.027.
  36. Nasir, Z. and Bitsuamlak, G.T. (2018), "Topographic effects on tornado-like vortex", Wind Struct., 27, 123-136. https://doi.org/10.12989/was.2018.27.2.123.
  37. Razavi, A. and Sarkar, P.P. (2018), "Laboratory investigation of the effects of translation on the near-ground tornado flow field", Wind Struct., 26, 179-190. https://doi.org/10.12989/was.2018.26.3.179.
  38. Refan, M., Hangan, H. and Wurman, J. (2014), "Reproducing tornadoes in laboratory using proper scaling", J. Wind Eng. Ind. Aerod., 135, 136-148. https://doi.org/10.1016/j.jweia.2014.10.008.
  39. Rotz, J., Yeh, G.C. and Bertwell, W. (1974), Tornado and Extreme Wind Design Criteria for Nuclear Power Plants, Bechtel Power Corp., San Francisco, California, USA.
  40. Sabareesh, G., Cao, S., Wang, J., Matsui, M. and Tamura, Y. (2018), "Effect of building proximity on external and internal pressures under tornado-like flow", Wind Struct., 26, 163-177. https://doi.org/10.12989/was.2018.26.3.163.
  41. Sarkar, P., Haan, F., Gallus Jr, W., Le, K. and Wurman, J. (2005), "Velocity measurements in a laboratory tornado simulator and their comparison with numerical and full-scale data", 37th Joint Meeting Panel on Wind and Seismic Effects, Tsukuba, May.
  42. Savory, E., Parke, G.A., Zeinoddini, M., Toy, N. and Disney, P. (2001), "Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower", Eng. Struct., 23, 365-375. https://doi.org/10.1016/S0141-0296(00)00045-6.
  43. Scott, P.L. and Liang, D., (2015), "Evaluation of shelter performance following the 2013 Moore tornado", Wind Struct., 21, 369-381. https://doi.org/10.12989/was.2015.21.4.369.
  44. Selvam, R.P. and Millett, P.C. (2003), "Computer modeling of tornado forces on buildings", Wind Struct., 6, 209-220. https://doi.org/10.12989/was.2003.6.3.209.
  45. Sengupta, A., Haan, F.L., Sarkar, P.P. and Balaramudu, V. (2008), "Transient loads on buildings in microburst and tornado winds", J. Wind Eng. Ind. Aerod., 96, 2173-2187. https://doi.org/10.1016/j.jweia.2008.02.050.
  46. Smagorinsky, J. (1963), "General circulation experiments with the primitive equations: I. The basic experiment", Month. Weath. Rev., 91, 99-164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2.
  47. Tang, Z. and Zuo, D., (2018), "Effects of aspect ratio on laboratory simulation of tornado-like vortices", Wind Struct., 27, https://doi.org/10.12989/was.2018.27.2.111.
  48. Tao, T., Wang, H., Yao, C., Zou, Z. and Xu, Z., (2018), "Performance of structures and infrastructure facilities during an EF4 Tornado in Yancheng", Wind Struct., 27, 137-147. https://doi.org/10.12989/was.2018.27.2.137.
  49. Wang, M., Cao, S. and Cao, J. (2021), "POD-based analysis of time-resolved tornado-like vortices", Wind Struct., 33, 13-27. https://doi.org/10.12989/was.2021.33.1.013.
  50. Ward, N.B. (1972), "The exploration of certain features of tornado dynamics using a laboratory model", J. Atmos. Sci., 29, 1194-1204. https://doi.org/10.1175/15200469(1972)029%3C1194:TEOCFO%3E2.0.CO;2.
  51. Wen, Y.K. (1975), "Dynamic tornadic wind loads on tall buildings", J. Struct. Div., 101, 169-185. https://doi.org/10.1061/JSDEAG.0003967.
  52. Wood, V.T. and White, L.W. (2013), "A parametric wind-pressure relationship for rankine versus non-rankine cyclostrophic vortices", J. Atmos. Oceanic Technol., 30, 2850-2867. https://doi.org/10.1175/jtech-d-13-00041.1.
  53. Xu, R., Wu, F., Zhong, M., Li, X. and Ding, J., (2020), "Numerical investigation on the aerodynamics and dynamics of a high-speed train passing through a tornado-like vortex", J. Fluids Struct., 96, 103042. https://doi.org/10.1016/j.jfluidstructs.2020.103042.
  54. Xu, Z. and Hangan, H. (2009), "An inviscid solution for modeling of tornadolike vortices", J. Appl. Mech., 29, 3993-4005. https://doi.org/10.1115/1.3063632.
  55. Yousef, M.A., Selvam, P.R. and Prakash, J. (2018), "A comparison of the forces on dome and prism for straight and tornadic wind using CFD model", Wind Struct., 26, 369-382. https://doi.org/10.12989/was.2018.26.6.369.
  56. Yu, X., Zhao, J. and Fan, W. (2021), "Tornadoes in China: spatiotemporal distribution and environmental characteristics", J. Trop. Meteorol., 37, 681-692. https://doi.org/10.16032/j.issn.1004-4965.2021.064.
  57. Zhang, H., Wang, H., Xu, Z., Liu, Z. and Khoo, B.C. (2023), "Investigation of the fluctuating velocity in a single-cell tornado-like vortex based on coherent structure extraction", Phys. Fluids, 35, 015135. https://doi.org/10.1063/5.0133107.
  58. Zhu, H., Chen, J., Li, F., Bai, X., Wang, X., Wang, H. and Zheng, W. (2017), "Tornado hazard assessment for a nuclear power plant in China", Energy Proced., 127, 20-28. https://doi.org/10.1016/j.egypro.2017.08.091.