Browse > Article
http://dx.doi.org/10.12989/scs.2019.30.1.001

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials  

Fakoor, Mahdi (Faculty of New Sciences & Technologies, University of Tehran)
Rafiee, Roham (Faculty of New Sciences & Technologies, University of Tehran)
Zare, Shahab (Faculty of New Sciences & Technologies, University of Tehran)
Publication Information
Steel and Composite Structures / v.30, no.1, 2019 , pp. 1-12 More about this Journal
Abstract
In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.
Keywords
orthotropic materials; fracture criterion; mixed mode; reinforced isotropic material; maximum tangential stress criterion;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Sih, G.C., Paris, P.C. and Irwin, G.R. (1965), "On cracks in rectilinearly anisotropic bodies", Int. J. Fract. Mech., 1(3), 189-203.   DOI
2 Sih, G.C., Chen, E.P., Huang, S.L. and McQuillen, E.J. (1975), "Material characterization on the fracture of filament-reinforced composites", J. Compos. Mater., 9(2), 167-186.   DOI
3 Tsai, S.W. and Wu, E.M. (1971), "A general theory of strength for anisotropic materials", J. Compos. Mater., 5(1), 58-80.   DOI
4 Van der Put, T.A.C.M. (2007), "A new fracture mechanics theory for orthotropic materials like wood", Eng. Fract. Mech., 74(5), 771-781.   DOI
5 Williams, J.G. and Birch, M.W. (1976), "Mixed mode fracture in anisotripic media", ASTM STP, p. 125-137.
6 Wu, E.M. (1967), "Application of fracture mechanics to anisotropic plates", J. Appl. Mech., 34(4), 967-974.   DOI
7 Al-Fasih, M.Y., Kueh, A.B.H., Sabah, S.H. and Yahya, M.Y. (2018), "Tow waviness and anisotropy effects on Mode II fracture of triaxially woven composite", Steel Compos. Struct., Int. J., 26(2), 241-253.
8 Aliha, M.R.M., Bahmani, A. and Akhondi, S. (2015), "Determination of mode III fracture toughness for different materials using a new designed test configuration", Mater. Des., 86, 863-871.   DOI
9 Anaraki, A.G. and Fakoor, M. (2010a), "General mixed mode I/II fracture criterion for wood considering T-stress effects", Mater. Des., 31(9), 4461-4469.   DOI
10 Anaraki, A.G. and Fakoor, M. (2010b), "Mixed mode fracture criterion for wood based on a reinforcement micro-crack damage model", Mater. Sci. Eng.: A, 527(27), 7184-7191.   DOI
11 Anaraki, A.G. and Fakoor, M. (2011), "A new mixed-mode fracture criterion for orthotropic materials, based on strength properties", J. Strain Anal. Eng. Des., 46(1), 33-44.   DOI
12 Buczek, M.B. and Herakovich, C.T. (1985), "A normal stress criterion for crack extension direction in orthotropic composite materials", J. Compos. Mater., 19(6), 544-553.   DOI
13 Cetisli, F. and Kaman, M.O. (2014), "Numerical analysis of interface crack problem in composite plates jointed with composite patch", Steel Compos. Struct., Int. J., 16(2), 203-220.   DOI
14 Chow, C.L. and Woo, C.W. (1979), "Orthotropic and mixed mode fracture in wood", Proceedings of the 1st International Conference of Wood Fracture, Vancouver, Canada, pp. 39-52.
15 Deretic-Stojanovic, B. and Kostic, S.M. (2017), "A simplified matrix stiffness method for analysis of composite and prestressed beams", Steel Compos. Struct., Int. J., 24(1), 53-63.   DOI
16 Fakoor, M. and Khansari, N.M. (2016), "Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties", Eng. Fract. Mech., 153, 407-420.   DOI
17 Ehart, R.J.A., Stanzl-Tschegg, S.E. and Tschegg, E.K. (1998), "Crack face interaction and mixed mode fracture of wood composites during mode III loading", Eng. Fract. Mech., 61(2), 253-278.   DOI
18 Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Basic Eng., 85(4), 519-525.   DOI
19 Faal, R.T., Aghsam, A. and Milani, A.S. (2015), "Stress intensity factors for cracks in functionally graded annular planes under anti-plane loading", Int. J. Mech. Sci., 93, 73-81.   DOI
20 Fakoor, M. (2017), "Augmented Strain Energy Release Rate (ASER): A novel approach for investigation of mixed-mode I/II fracture of composite materials", Eng. Fract. Mech., 179, 177-189.   DOI
21 Fakoor, M. and Rafiee, R. (2013), "Fracture investigation of wood under mixed mode I/II loading based on the maximum shear stress criterion", Strength Mater., 45(3), 378-385.   DOI
22 Fakoor, M., Rafiee, R. and Sheikhansari, M. (2015), "The influence of fiber-crack angle on the crack tip parameters in orthotropic materials", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(3), 418-431.   DOI
23 Farid, H.M. and Fakoor, M. (2019), "Mixed Mode I/II Fracture Criterion for Arbitrary Cracks in Orthotropic Materials Considering T-Stress Effects", Theor. Appl. Fract. Mech., 99, 147-160.   DOI
24 Gregory, M.A. and Herakovich, C.T. (1986), "Predicting crack growth direction in unidirectional composites", J. Compos. Mater., 20(1), 67-85.   DOI
25 Golewski, G.L. (2017a), "Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture", J. Civil Eng. Manag., 23(5), 613-620.   DOI
26 Golewski, G.L. (2017b), "Generalized fracture toughness and compressive strength of sustainable concrete including low calcium fly ash", Materials, 10(12), 1393.   DOI
27 Golewski, G.L. (2017c), "Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading", Struct. Eng. Mech., Int. J., 62(1), 1-9.   DOI
28 Hunt, D.G. and Croager, W.P. (1982), "Mode II fracture toughness of wood measured by a mixed-mode test method", J. Mater. Sci. Lett., 1(2), 77-79.   DOI
29 Jernkvist, L.O. (2001a), "Fracture of wood under mixed mode loading: I. Derivation of fracture criteria", Eng. Fract. Mech., 68(5), 549-563.   DOI
30 Jernkvist, L.O. (2001b), "Fracture of wood under mixed mode loading: II. Experimental investigation of Picea abies", Eng. Fract. Mech., 68(5), 565-576.   DOI
31 Lazzarin, P., Campagnolo, A. and Berto, F. (2014), "A comparison among some recent energy-and stress-based criteria for the fracture assessment of sharp V-notched components under Mode I loading", Theor. Appl. Fract. Mech., 71, 21-30.   DOI
32 Leicester, R.H. (1974), "Application of Linear Fracture Mechanics in the Design of Timber Structures", Proceedings, Conference Australian Fractured Group 23, Melbourne, Australia, October, pp. 156-164.
33 Merzoug, M., Boulenouar, A. and Benguediab, M. (2017), "Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch", Steel Compos. Struct., Int. J., 25(2), 209-216.
34 Li, J., Meng, S., Tian, X., Song, F. and Jiang, C. (2012), "A nonlocal fracture model for composite laminates and numerical simulations by using the FFT method", Compos. Part B: Eng., 43(3), 961-971.   DOI
35 Lim, W.K. (2012), "Mixed-mode crack extension in orthotropic materials under biaxial load", Int. J. Fract, 173(1), 71-77.   DOI
36 Mall, S., Murphy, J.F. and Shottafer, J.E. (1983), "Criterion for mixed mode fracture in wood", J. Eng. Mech., 109(3), 680-690.   DOI
37 Motamedi, D. and Mohammadi, S. (2012), "Fracture analysis of composites by time independent moving-crack orthotropic XFEM", Int. J. Mech. Sci., 54(1), 20-37.   DOI
38 Nobile, L. and Carloni, C. (2005), "Fracture analysis for orthotropic cracked plates", Compos. Struct., 68(3), 285-293.   DOI
39 Romanowicz, M. and Seweryn, A. (2008), "Verification of a nonlocal stress criterion for mixed mode fracture in wood", Eng. Fract. Mech., 75(10), 3141-3160.   DOI
40 Sadowski, T. and Golewski, G.L. (2018), "A failure analysis of concrete composites incorporating fly ash during torsional loading", Compos. Struct., 183, 527-535.   DOI
41 Saouma, V.E., Ayari, M.L. and Leavell, D.A. (1987), "Mixed mode crack propagation in homogeneous anisotropic solids", Eng. Fract. Mech., 27(2), 171-184.   DOI
42 Serier, N., Mechab, B., Mhamdia, R. and Serier, B. (2016), "A new formulation of the J integral of bonded composite repair in aircraft structures", Struct. Eng. Mech., Int. J., 58(5), 745-755.   DOI