• 제목/요약/키워드: maximum likelihood estimate and Monte Carlo simulation

검색결과 21건 처리시간 0.019초

Comparative analysis of Bayesian and maximum likelihood estimators in change point problems with Poisson process

  • Kitabo, Cheru Atsmegiorgis;Kim, Jong Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권1호
    • /
    • pp.261-269
    • /
    • 2015
  • Nowadays the application of change point analysis has been indispensable in a wide range of areas such as quality control, finance, environmetrics, medicine, geographics, and engineering. Identification of times where process changes would help minimize the consequences that might happen afterwards. The main objective of this paper is to compare the change-point detection capabilities of Bayesian estimate and maximum likelihood estimate. We applied Bayesian and maximum likelihood techniques to formulate change points having a step change and multiple number of change points in a Poisson rate. After a signal from c-chart and Poisson cumulative sum control charts have been detected, Monte Carlo simulation has been applied to investigate the performance of Bayesian and maximum likelihood estimation. Change point detection capacities of Bayesian and maximum likelihood estimation techniques have been investigated through simulation. It has been found that the Bayesian estimates outperforms standard control charts well specially when there exists a small to medium size of step change. Moreover, it performs convincingly well in comparison with the maximum like-lihood estimator and remains good choice specially in confidence interval statistical inference.

Efficiency and Robustness of Fully Adaptive Simulated Maximum Likelihood Method

  • Oh, Man-Suk;Kim, Dai-Gyoung
    • Communications for Statistical Applications and Methods
    • /
    • 제16권3호
    • /
    • pp.479-485
    • /
    • 2009
  • When a part of data is unobserved the marginal likelihood of parameters given the observed data often involves analytically intractable high dimensional integral and hence it is hard to find the maximum likelihood estimate of the parameters. Simulated maximum likelihood(SML) method which estimates the marginal likelihood via Monte Carlo importance sampling and optimize the estimated marginal likelihood has been used in many applications. A key issue in SML is to find a good proposal density from which Monte Carlo samples are generated. The optimal proposal density is the conditional density of the unobserved data given the parameters and the observed data, and attempts have been given to find a good approximation to the optimal proposal density. Algorithms which adaptively improve the proposal density have been widely used due to its simplicity and efficiency. In this paper, we describe a fully adaptive algorithm which has been used by some practitioners but has not been well recognized in statistical literature, and evaluate its estimation performance and robustness via a simulation study. The simulation study shows a great improvement in the order of magnitudes in the mean squared error, compared to non-adaptive or partially adaptive SML methods. Also, it is shown that the fully adaptive SML is robust in a sense that it is insensitive to the starting points in the optimization routine.

Maximum penalized likelihood estimation for a stress-strength reliability model using complete and incomplete data

  • Hassan, Marwa Khalil
    • Communications for Statistical Applications and Methods
    • /
    • 제25권4호
    • /
    • pp.355-371
    • /
    • 2018
  • The two parameter negative exponential distribution has many practical applications in queuing theory such as the service times of agents in system, the time it takes before your next telephone call, the time until a radioactive practical decays, the distance between mutations on a DNA strand, and the extreme values of annual snowfall or rainfall; consequently, has many applications in reliability systems. This paper considers an estimation problem of stress-strength model with two parameter negative parameter exponential distribution. We introduce a maximum penalized likelihood method, Bayes estimator using Lindley approximation to estimate stress-strength model and compare the proposed estimators with regular maximum likelihood estimator for complete data. We also introduce a maximum penalized likelihood method, Bayes estimator using a Markov chain Mote Carlo technique for incomplete data. A Monte Carlo simulation study is performed to compare stress-strength model estimates. Real data is used as a practical application of the proposed model.

AOI 데이터를 이용한 효과적인 Defect Size Distribution 구축방법: 반도체와 LCD생산 응용 (Effective Construction Method of Defect Size Distribution Using AOI Data: Application for Semiconductor and LCD Manufacturing)

  • 하정훈
    • 산업공학
    • /
    • 제21권2호
    • /
    • pp.151-160
    • /
    • 2008
  • Defect size distribution is a probability density function for the defects that occur on wafers or glasses during semiconductor/LCD fabrication. It is one of the most important information to estimate manufacturing yield using well-known statistical estimation methods. The defects are detected by automatic optical inspection (AOI) facilities. However, the data that is provided from AOI is not accurate due to resolution of AOI and its defect detection mechanism. It causes distortion of defect size distribution and results in wrong estimation of the manufacturing yield. In this paper, I suggest a size conversion method and a maximum likelihood estimator to overcome the vague defect size information of AOI. The methods are verified by the Monte Carlo simulation that is constructed as similar as real situation.

Moments and Estimation From Progressively Censored Data of Half Logistic Distribution

  • Sultan, K.S.;Mahmoud, M.R.;Saleh, H.M.
    • International Journal of Reliability and Applications
    • /
    • 제7권2호
    • /
    • pp.187-201
    • /
    • 2006
  • In this paper, we derive recurrence relations for the single and product moments of progressively Type-II right censored order statistics from half logistic distribution. Next, we derive the maximum likelihood estimators (MLEs) of the location and scale parameters of the half logistic distribution. In addition, we use the setup proposed by Balakrishnan and Aggarwala (2000) to compute the approximate best linear unbiased estimates (ABLUEs) of the location and scale parameters. Finally, we point out a simulation study to compare between the efficiency of the techniques considered for the estimation.

  • PDF

Simulation study on the estimation of multinomial proportions

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권2호
    • /
    • pp.411-417
    • /
    • 2012
  • In this paper, we consider the estimation of multinomial proportions. Multinomial distribution is the most important multivaritate distribution. Estimation of multinomial parameters for multinomial distribution is widely applicable to many practical research areas including genetics. We investigated the properties of several frequency substitution estimates and derived the maximum likelihood estimate of multinomial proportions of Hardy Weinberg proportions. Phenotype and genotype frequencies of allele are used to the estimation of multinomial proportions. These estimates are then analyzed via numerical data. Small sample Monte Carlo simulation is conducted to compare considered estimates of multinomial proportions.

Design wind speed prediction suitable for different parent sample distributions

  • Zhao, Lin;Hu, Xiaonong;Ge, Yaojun
    • Wind and Structures
    • /
    • 제33권6호
    • /
    • pp.423-435
    • /
    • 2021
  • Although existing algorithms can predict wind speed using historical observation data, for engineering feasibility, most use moment methods and probability density functions to estimate fitted parameters. However, extreme wind speed prediction accuracy for long-term return periods is not always dependent on how the optimized frequency distribution curves are obtained; long-term return periods emphasize general distribution effects rather than marginal distributions, which are closely related to potential extreme values. Moreover, there are different wind speed parent sample types; how to theoretically select the proper extreme value distribution is uncertain. The influence of different sampling time intervals has not been evaluated in the fitting process. To overcome these shortcomings, updated steps are introduced, involving parameter sensitivity analysis for different sampling time intervals. The extreme value prediction accuracy of unknown parent samples is also discussed. Probability analysis of mean wind is combined with estimation of the probability plot correlation coefficient and the maximum likelihood method; an iterative estimation algorithm is proposed. With the updated steps and comparison using a Monte Carlo simulation, a fitting policy suitable for different parent distributions is proposed; its feasibility is demonstrated in extreme wind speed evaluations at Longhua and Chuansha meteorological stations in Shanghai, China.

Generalized nonlinear percentile regression using asymmetric maximum likelihood estimation

  • Lee, Juhee;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • 제28권6호
    • /
    • pp.627-641
    • /
    • 2021
  • An asymmetric least squares estimation method has been employed to estimate linear models for percentile regression. An asymmetric maximum likelihood estimation (AMLE) has been developed for the estimation of Poisson percentile linear models. In this study, we propose generalized nonlinear percentile regression using the AMLE, and the use of the parametric bootstrap method to obtain confidence intervals for the estimates of parameters of interest and smoothing functions of estimates. We consider three conditional distributions of response variables given covariates such as normal, exponential, and Poisson for three mean functions with one linear and two nonlinear models in the simulation studies. The proposed method provides reasonable estimates and confidence interval estimates of parameters, and comparable Monte Carlo asymptotic performance along with the sample size and quantiles. We illustrate applications of the proposed method using real-life data from chemical and radiation epidemiological studies.

Wakeby Distribution and the Maximum Likelihood Estimation Algorithm in Which Probability Density Function Is Not Explicitly Expressed

  • Park Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.443-451
    • /
    • 2005
  • The studied in this paper is a new algorithm for searching the maximum likelihood estimate(MLE) in which probability density function is not explicitly expressed. Newton-Raphson's root-finding routine and a nonlinear numerical optimization algorithm with constraint (so-called feasible sequential quadratic programming) are used. This algorithm is applied to the Wakeby distribution which is importantly used in hydrology and water resource research for analysis of extreme rainfall. The performance comparison between maximum likelihood estimates and method of L-moment estimates (L-ME) is studied by Monte-carlo simulation. The recommended methods are L-ME for up to 300 observations and MLE for over the sample size, respectively. Methods for speeding up the algorithm and for computing variances of estimates are discussed.

Alternative robust estimation methods for parameters of Gumbel distribution: an application to wind speed data with outliers

  • Aydin, Demet
    • Wind and Structures
    • /
    • 제26권6호
    • /
    • pp.383-395
    • /
    • 2018
  • An accurate determination of wind speed distribution is the basis for an evaluation of the wind energy potential required to design a wind turbine, so it is important to estimate unknown parameters of wind speed distribution. In this paper, Gumbel distribution is used in modelling wind speed data, and alternative robust estimation methods to estimate its parameters are considered. The methodologies used to obtain the estimators of the parameters are least absolute deviation, weighted least absolute deviation, median/MAD and least median of squares. The performances of the estimators are compared with traditional estimation methods (i.e., maximum likelihood and least squares) according to bias, mean square deviation and total mean square deviation criteria using a Monte-Carlo simulation study for the data with and without outliers. The simulation results show that least median of squares and median/MAD estimators are more efficient than others for data with outliers in many cases. However, median/MAD estimator is not consistent for location parameter of Gumbel distribution in all cases. In real data application, it is firstly demonstrated that Gumbel distribution fits the daily mean wind speed data well and is also better one to model the data than Weibull distribution with respect to the root mean square error and coefficient of determination criteria. Next, the wind data modified by outliers is analysed to show the performance of the proposed estimators by using numerical and graphical methods.