• Title/Summary/Keyword: maximum lifetime

Search Result 271, Processing Time 0.105 seconds

Estimators for Parameters Included in Cold Standby Systems with Imperfect Switches

  • Al-Ruzaiza A. S.;Sarhan Ammar M.
    • International Journal of Reliability and Applications
    • /
    • v.6 no.2
    • /
    • pp.65-78
    • /
    • 2005
  • In this paper we derive estimations of the parameters included in the distribution of the lifetime of k-out-of-m cold standby system with imperfect switches. Maximum likelihood and Bayes procedures are followed to get such estimations. Numerical studies, using Monte Carlo simulation method, are given in order to explain how we can utilize the theoretical results derived, and to compare the performance of the two different methods used. The criterion of comparisons is the mean squared errors associated with each estimate.

  • PDF

A Reliability Sampling Plan Based on Progressive Interval Censoring Under Pareto Distribution of Second Kind

  • Aslam, Muhammad;Huang, Syuan-Rong;Chi, Hyuck-Jun;Ahmad, Munir;Rasool, Mujahid
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.154-160
    • /
    • 2011
  • In this paper, a reliability sampling plan under progressively type-1 interval censoring is proposed when the lifetime of products follows the Pareto distribution of second kind. We use the maximum likelihood estimator for the median life and its asymptotic distribution. The cost model is proposed and the design parameters are determined such that the given producer's and the consumer's risks are satisfied. Tables are given and the results are explained with examples.

A study on the Characteristics of the old modules (오래된 모듈의 특성에 관한 연구)

  • Hong, Sa-Keun;Choi, Hong-Kyoo;Yum, Sung-Bae;Song, Young-Joo;Choi, Young-Jun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.351-354
    • /
    • 2009
  • The solar photovoltaic power generator is more important than other renewable energy. Because The solar photovoltaic power generator has been commercialized. So the solar photovoltaic power plants have been constructed. The photovoltaic module lifetime is estimated about 20 year. But The results can not be trusted Because It did not test in the korea. In this paper, We test the maximum power of three modules used 23 years.

  • PDF

Estimations of Parameters in Multi-component Series Systems Using Masked Data

  • Sarhan Ammar M.;Abouammoh A.M.;Al-Ameri Mansour
    • International Journal of Reliability and Applications
    • /
    • v.7 no.1
    • /
    • pp.41-53
    • /
    • 2006
  • The exact cause of the system's failure is often unknown in the masked system lifetime data. In such type of data, there are two observable quantities, namely (i) the systems time to failure and (ii) the set of systems components that contains the component, which might cause the system to fail. Our objective in this paper is to use the maximum likelihood procedure in the presence of masked data to make inference for the reliability of the system's components. We assume a multi-component series system where each component has a constant failure rate. Different cases that permit for closed form solutions of point estimates are considered. The results obtained in this paper generalize other published results.

  • PDF

Statistical Properties of Kumaraswamy Exponentiated Gamma Distribution

  • Diab, L.S.;Muhammed, Hiba Z.
    • International Journal of Reliability and Applications
    • /
    • v.16 no.2
    • /
    • pp.81-98
    • /
    • 2015
  • The Exponentiated Gamma (EG) distribution is one of the important families of distributions in lifetime tests. In this paper, a new generalized version of this distribution which is called kumaraswamy Exponentiated Gamma (KEG) distribution is introduced. A new distribution is more flexible and has some interesting properties. A comprehensive mathematical treatment of the KEG distribution is provided. We derive the $r^{th}$ moment and moment generating function of this distribution. Moreover, we discuss the maximum likelihood estimation of the distribution parameters. Finally, an application to real data sets is illustrated.

Exponentiated Quasi Lindley distribution

  • Elbatal, I.;Diab, L.S.;Elgarhy, M.
    • International Journal of Reliability and Applications
    • /
    • v.17 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • The Exponentiated Quasi Lindley (EQL) distribution which is an extension of the quasi Lindley Distribution is introduced and its properties are explored. This new distribution represents a more flexible model for the lifetime data. Some statistical properties of the proposed distribution including the shapes of the density and hazard rate functions, the moments and moment generating function, the distribution of the order statistics are given. The maximum likelihood estimation technique is used to estimate the model parameters and finally an application of the model with a real data set is presented for the illustration of the usefulness of the proposed distribution.

Estimation of parameters including a quadratic failure rate semi-Markov reliability model

  • El-Gohary, A.;Alshamrani, A.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • This paper discusses the stochastic analysis and the statistical inference of a quadratic failure rate semi-Markov reliability model. Maximum likelihood procedure will be used to obtain the estimators of the parameters included in this reliability model. Based on the assumption that the lifetime and repair time of the system units are random variables with quadratic failure rate, the reliability function of this system is obtained. Also, the distribution of the first passage time of this system is derived. Many important special cases are discussed.

  • PDF

Point and interval estimation for a simple step-stress model with Type-I censored data from geometric distribution

  • Arefi, Ahmad;Razmkhah, Mostafa
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.29-41
    • /
    • 2017
  • The estimation problem of expected time to failure of units is studied in a discrete set up. A simple step-stress accelerated life testing is considered with a Type-I censored sample from geometric distribution that is a commonly used distribution to model the lifetime of a device in discrete case. Maximum likelihood estimators as well as the associated distributions are derived. Exact, approximate and bootstrap approaches construct confidence intervals that are compared via a simulation study. Optimal confidence intervals are suggested in view of the expected width and coverage probability criteria. An illustrative example is also presented to explain the results of the paper. Finally, some conclusions are stated.

Optimal Design of Accelerated Degradation Tests under the Constraint of Total Experimental Cost in the Case that the Degradation Characteristic Follows a Wiener Process (열화가 Wiener process를 따르는 경우의 비용을 고려한 가속열화시험 계획)

  • Lim, Heon-Sang
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.2
    • /
    • pp.117-125
    • /
    • 2012
  • For the highly reliable products, an accelerated degradation test (ADT) is a useful tool which has been employed in industry to obtain reliability-related information within an affordable amount of time and cost. In an ADT, as all other reliability tests, it is important to carefully design the ADT beforehand to obtain estimates of the quantities of interest as precisely as possible. In this paper, optimal ADTs are developed assuming that the constant-stress loading method is employed and the degradation characteristic follows a Wiener process. Under the constraint that the total cost does not exceed a pre-specified budget, the stress levels, the number of test units allocated to each stress level and the number of measurement (termination time) are determined such that the asymptotic variance of the maximum likelihood estimator of the q-th quantile of the lifetime distribution at the use condition is minimized.

Optimal Design of Accelerated Degradation Tests with Two Stress Variables in the Case that the Degradation Characteristic Follows Weibull Distribution (열화특성치가 와이블분포를 따르는 경우 두 가지 스트레스 변수를 고려한 가속열화시험의 최적 설계)

  • Lim, Heonsang;Kim, Yong Soo
    • Journal of Applied Reliability
    • /
    • v.13 no.2
    • /
    • pp.87-98
    • /
    • 2013
  • Accelerated degradation tests (ADTs) measuring failure-related degradation characteristic at the accelerated condition are widely used to assess the reliability of highly reliable products. Often, however, little degradation could be observed even in single-stress ADTs due to the high reliability of test unit, and as a result poor estimate of the reliability may be obtained. ADTs with multiple stress variables can be employed to overcome such difficulties. In this paper, optimal ADT plans with two stress variables are developed assuming that the degradation characteristic follows Weibull distribution by determining the stress levels, the proportion of test units allocated to each stress level such that the asymptotic variance of the maximum likelihood estimator of the q-th quantile of the lifetime distribution at the use condition is minimized.