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Abstract. The Exponentiated Gamma (EG) distribution is one of the important families of 
distributions in lifetime tests. In this paper, a new generalized version of this distribution 
which is called kumaraswamy Exponentiated Gamma (KEG) distribution is introduced. A 
new distribution is more flexible and has some interesting properties. A comprehensive 
mathematical treatment of the KEG distribution is provided. We derive the   moment 
and moment generating function of this distribution. Moreover, we discuss the maximum 
likelihood estimation of the distribution parameters. Finally, an application to real data 
sets is illustrated. 
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1. INTRODUCTION AND MOTIVATION 
 
The gamma distribution is the most popular model for analyzing skewed data and 
hydrological processes. one of the important families of distributions in lifetime tests is 
the exponentiated gamma (EG) distribution. The exponentiated gamma (EG) distribution 
has been introduced by Gupta et al. (1998) which has cumulative distribution function 
(c.d.f.) and a probability density function (p.d.f.) of the form, respectively; 

( ; , ) 1 (1 ) , 0, 0,  0.xG x e x x
θλλ θ λ λ θ−⎡ ⎤= − + > > ≥⎣ ⎦                       (1) 

              [ ] .)1(1),;( 12 −−− +−= θλλ λθλθλ xexexg xx                   (2) 
where λ  and θ  are scale  and shape parameters respectively. 

                                                           
*Corresponding Author. 
 E-mail address: hiba_stat@cu.edu.eg 



 

 

82 Statistical properties of kumaraswamy exponentiated gamma distribution

 

Shawky and Bakoban (2008) discussed the exponentiated gamma distribution as an 
important model of life time models and derived Bayesian and non-Bayesian estimators of 
the shape parameter, reliability and failure rate functions in the case of complete and type-
II censored samples. Also order statistics from exponentiated gamma distribution and 
associated inference was discussed by Shawky and Bakoban (2009). Ghanizadeh, et al. 
(2011), deal with the estimation of parameters of the Exponentiated Gamma (EG) 
distribution with presence of k  outliers. The maximum likelihood and moment of the 
estimators were derived. These estimators are compared empirically using Monte Carlo 
simulation. Singh et al. (2011) proposed bayes estimators of the parameter of the 
exponentiated gamma distribution and associated reliability function under general 
entropy loss function for a censored sample. The proposed estimators were compared with 
the corresponding Bayes estimators obtained under squared error loss function and 
maximum likelihood estimators through their simulated risks. Khan and Kumar (2011) 
established the explicit expressions and some recurrence relations for single and product 
moments of lower generalized order statistics from exponentiated gamma distribution. 
Sanjay et el. (2011) proposed bayes estimators of the parameter of the exponentiated 
gamma distribution and associated reliability function under general entropy loss function 
for a censored sample. Navid and Muhammad (2012) introduced bayesian analysis of 
exponentiated gamma distribution under type II censored samples. Recentely, Parviz et al. 
(2013) discussed Classical and Bayesian estimation of parameters on the generalized 
exponentiated gamma distribution. 
The Kumaraswamy distribution (Kumaraswamy, 1980) is not very common among 
statisticians and has been little explored in the literature. We refer to the Kum distribution 
to denote the Kumaraswamy distribution. Its cumulative distribution function (cdf) is 
defined by 

( ) ,10,11)( <<−−= xxxF ba                            (3) 
where ,0>a  and 0>b are two additional parameters whose role is to introduce 
asymmetry and produce distributions with heavier tails. The Kum distribution does not 
seem to be very familiar to statisticians and has not been investigated systematically in 
much detail before, nor has its relative interchangeability with the beta distribution has 
been widely appreciated. However, in a very recent paper, Jones (2009) explored the 
background and genesis of the Kum distribution and, more importantly, made clear some 
similarities and differences between the beta and Kum distributions. He highlighted 
several advantages of the Kum distribution over the beta distribution: the normalizing 
constant is very simple; simple explicit formulae for the distribution and quantile 
functions which do not involve any special functions; a simple formula for random variate 
generation; explicit formulae for L-moments and simpler formulae for moments of order 
statistics. Further, according to Jones (2009), the beta distribution has the following 
advantages over the Kum distribution: simpler formulae for moments and moment 
generating function (mgf); a one-parameter sub-family of symmetric distributions; simpler 
moment estimation and more ways of generating the distribution via physical processes. 
The probability density function (pdf) of the Kum distribution also has a simple form 

( ) ,1)( 11 −− −=
baa xabxxf                            (4) 
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and it can be unimodal, increasing, decreasing or constant, depending in the same way on 
the values of its parameters like the beta distribution. 
If  )(xG   is the baseline cdf of a random variable, the cdf of the Kum-generalized 
distribution, say GKum−  distribution, is defined by (Cordeiro and Castro, 2010) 

[ ]baxGxF )(11)( −−=                                       (5) 
The density function corresponding to (5) is 

            [ ] 11 )(1)()()( −− −=
baa xGxGxabgxf                                         (6) 

where  )()( xGxg dx
d= . The density family (6) has many of the same properties of the 

class of beta - G  distributions (see Eugene et al. (2002)), but has some advantages in 
terms of tractability, since it does not involve any special function such as the beta 
function. So, the new GKum−  distribution is obtained by adding two parameters a  and 
b  to the quantile function of the G distribution. This generalization contains distributions 
with unimodal and bathtub shaped hazard rate functions. It also contemplates a broad class 
of models with monotone risk functions. Some mathematical properties of the GKum−
distribution derived by Cordeiro and Castro (2010) are usually much simpler than those 
properties of the beta G distribution (Eugene et al., 2002). 
In this note, we combine the works of Kumaraswamy (1980) and Cordeiro and de Castro 
(2011) to derive some mathematical properties of a new model, called the Kumaraswamy 
Exponentiated Gamma )( EGKw −  distribution. Equivalently, as occurs with the beta- G   
family of distributions. Special GKw−  distributions can be generated as follows: the  

−wK normal distribution is obtained by taking )(xG  in (1.5) to be the normal cumulative 
function. Analogously, the −wK Weibull (Cordeiro et al.(2010)), General results for the 

Kumaraswamy- G  distribution (Nadarajah et al.(2011)). wK -generalized gamma (Pascoa 

et al.(2011)), wK -Birnbaum-Saunders (Saulo et al. (2012)) Beta-Linear Failure Rate 
Distribution and its Applications (see Jafari et al.(2012)) and  −wK Gumbel (Cordeiro et 
al. (2011)) distributions are obtained by taking )(xG  to be the cdf of the Weibull, 
generalized gamma, Birnbaum-Saunders and Gumbel distributions, respectively, among 
several others. Hence, each new GKw−  distribution can be generated from a specified  
G  distribution. 
A physical interpretation of the wK G−  distribution given by (5) and (6) (for a  and  b  
positive integers) is as follows. Suppose a system is made of b  independent components 
and that each component is made up of a  independent subcomponents. Suppose the 
system fails if any of the b  components fails and that each component fails if all of the a  
subcomponents fail. Let   21 ,...,, jajj XXX  denote the life times of the subcomponents 

with in the thj  component, ,...,1=j b  with common (cdf) G . Let jX  denote the 

lifetime of the thj  component, ,...,1=j b  and let X  denote the lifetime of the entire 
system. Then the (cdf) of X  is given by 
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                             (7) 

So, it follows that the −wK G distribution given by (3) and (4) is precisely the time to 
failure distribution of the entire system.  
The rest of the article is organized as follows. In Section 2, we define the cumulative, 
density and hazard functions of the EGKw − distribution and some special cases. 
Quantile function, median, moments, moment generating function discussed in Section 3. 
Section 4 included the order statistics. The least squares and weighted least squares 
estimators are introduced in Section 5. Maximum likelihood estimation is performed and 
the observed information matrix is determined in Section 6. Section 7 gives applications 
involving a real data set.  
 
 

2. KUMARASWAMY EXPONENTIATED GAMMA DISTRIBUTION 
 
Let  ),,( θλxG   is the exponentiated gamma cumulative distribution with parameters λ   
and  θ  , then the Equation (5) yields the Kumaraswamy exponentiated gamma )(KEG   
cumulative distribution 

{ } ( )| , , , ( ) 1 1 1 (1 ) ,
ax b

X a bF x e x
θλ

λ θ λ−⎡ ⎤= − − − +⎢ ⎥⎣ ⎦
                          (8)   

where 0>λ   is a scale parameter and the other positive parameters and θ , a  and b  are 
shape parameters.  
The corresponding pdf, hazard rate (HR) and reversed hazard rate (RHR) function are 
respectively, 

{ } [ ] [ ][ ] ,)1(11)1(1   )(
1 12

,,,|

−
−−−− +−−+−=

baxaxx
baX xexeexbaxf θλθλλ

θλ λλθλ         (9) 

{ }| , , ,

12

 

( , , , , )( )
1 ( , , , , )

   1 (1 )
,

1 1 (1 )

X a b

ax x

ax

f x a bh x
F x a b

a b x e e x

e x

λ θ

θλ λ

θλ

λ θ
λ θ

θλ λ

λ

−− −

−

=
−

⎡ ⎤− +⎣ ⎦=
⎡ ⎤⎡ ⎤− − +⎣ ⎦⎢ ⎥⎣ ⎦

                       (10) 

and 
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     (12) 

The probability density function in Equation (9) does not involve any complicated 
function. If  X   is a random variable with pdf (9), we write ),,,( θλbaKEGX ∼ . If  

1== ba , we get exponentiated gamma distribution, also when the shape parameter  
1==== λθba , we get the gamma distribution with shape parameter 2=α  and scale 

parameter 1=β  , i.e., )1,2(G . For more details about this distribution, see Shawky and 
Bakoban (2008, 2009). 
In Figures 1 and 2, we plot the KEG density and hazard rate function for selected 
parameter values respectively. Also in Figure 3, we plot the KEG CDF for selected 
parameter values. 
 
 

 
Figure 1. Plots of the KEG density for selected parameter values 
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 Figure 2. Plots of the KEG hazard rate for selected parameter values 

 
 

 
Figure 3. Plots of the KEG cdf for selected parameter values 

 
 
2.1 Expansion for the density function 
 
In this Subsection, we present two formulae for the cdf of the KEG distribution 
depending if the parameter 0>b  is real non- integer or integer. First, if 1<z  and 0>b  
is real non- integer, we have 

   
1

0

1 ( 1) ( )(1 ) ( 1) .
! ( )

j
b j j j

j

b bz z z
j j b j

∞
−

=

−⎛ ⎞ − Γ
− = − =⎜ ⎟ Γ −⎝ ⎠

∑                               (13) 

Using the expansion (12) in (8), the cdf of the KEG  distribution when 0>b  is real non-
integer follows 

{ } ( ) .)1(1)1(1)(
0

,,,|
jaxj

j
baX xe

j
b

xF θλ
θλ λ+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−= −

∞

=
∑  

when 0>b  is integer, using the expansion (12) in (8), we get  
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also using the power series of (12) the pdf (9) becomes 

 
{ }
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again, by using (12) in the last factor of each summand in (14) we obtain 
 

{ }
1 ( 1) 1 2 ( 1)
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,
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X a b
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where 
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3. STATISTOCAL PROPERTIES 
 

This Section is devoted to studying statistical properties of the )(KEG distribution, 
specifically quantile function, moments and moment generating function 
 
3.1 Quantile function and simulation 
 
The quantile function corresponding to (8) is )()( qq xXPxF ≤=  where  

),()( 1
)( uFx KEGq

−=  is given by the following relation 
1

1
( )

( )(1 ) 1 1 (1 )
aq bx

qe x q θλ λ− ⎡ ⎤+ = − − −⎣ ⎦                                     (17) 

Simulating the KEG random variable is straightforward. Let U be a uniform variate on the 
unit interval (0, 1). Thus, by means of the inverse transformation method, we consider the 
random variable  X   given by the relation 

  
1

1
( )

( )(1 ) 1 1 (1 ) .ai bx
ie x u θλ λ− ⎡ ⎤+ = − − −⎣ ⎦                                    (18) 

 
3.2 Moments 
 
In this Subsection we discuss the    moment for )(KEG  distribution. Moments are 
necessary and important in any statistical analysis, especially in applications. It can be 
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used to study the most important features and characteristics of a distribution (e.g., 
tendency, dispersion, skewness and kurtosis). 
 
Theorem 1. If  X   has  KEG ),( xΦ  ),,,(, baθλ=Φ   then the  moment of  X   is 
given by the following 

2

,
0

( ) ( 2),
1

r mk k m
r j k

mm

x w r m
k
λμ λ

+ +

=−

⎛ ⎞ ⎛ ⎞= Γ + +⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠
∑                         (19) 

where 
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θ
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k
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j

bkj

kj
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⎠

⎞
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⎠

⎞
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∞

=

∞

=
∑∑  

Proof.  
Let  X   be a random variable with density function (16). The    ordinary moment of 
the  )(KEG   distribution is given by 

  

)
0

1 ( 1)
, 0

( ) ( ( , )
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r r
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r k x k
j k
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                                     (20) 

using the binomial series expansion we have 
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⎛ ⎞ ⎛ ⎞= Γ + +⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠

∑

∑
                        (21) 

which completes the proof. 
 
Based on the first four moments of the )(KEG distribution, the measures of skewness 

)(ΦA  and kurtosis )(Φk  of the )(KEG  distribution can obtained as 

3
2

3
3 1 2 1

2
2 1

( ) 3 ( ) ( ) 2 ( )( ) ,
( ) ( )

A μ θ μ θ μ θ μ θ

μ θ μ θ

− +
Φ =

⎡ ⎤−⎣ ⎦
                                (22) 

and  
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2 4
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3.3 Moment generating function 
 
In this Subsection we derived the moment generating function of  )(KEG  distribution. 
 
Theorem 2. If X has )(KEG distribution, then the moment generating function )(tM X  
has the following form 

          

2
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Proof. 
We start with the well known definition of the moment generating function given by 
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which completes the proof. 
 
 

4. DISTRIBUTION OF THE ORDER STATISTICS 
 
In this Section, we derive closed form expressions for the pdfs of The  order statistic of 
the )(KEG  distribution, also, the measures of skewness and kurtosis of the distribution of 
the  order statistic in a sample of size n  for different choices of rn;  are presented in 
this Section. Let nXXX ,...,, 21  be a simple random sample from (KEG) distribution with 
pdf and cdf given by (10) and (14), respectively. 

[ ] [ ]1
:

1( ,; ) ( , ) 1 ( , ) ( , )
( , 1)

r n r
r nf x F x F x f x

B r n r
− −Φ = Φ − Φ Φ

− +
              (26) 
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Let nXXX ,...,, 21  denote the order statistics obtained from this sample. We now give the 
probability density function of nrX : , say ),(: Φxf nr  and the moments of nrX :  

nr ,...,2,1, = . Therefore, the measures of skewness and kurtosis of the distribution of the  

nrX :  are presented. The probability density function of nrX :  is given by 

[ ] [ ]1
:

1( ,; ) ( , ) 1 ( , ) ( , )
( , 1)

r n r
r nf x F x F x f x

B r n r
− −Φ = Φ − Φ Φ

− +
                (27) 

where ),( ΦxF  and ),( Φxf  are the cdf and pdf of the )(KEG  distribution given by (8), 
(9), respectively, and since 1),(0 <Φ< xF , for 0>x , by using the binomial series 

expansion of  [ ] rnxF −Φ− ),(1 , given by 
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1 ( , ) ( 1) ( , ) ,
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n r
F x F x
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=

−⎛ ⎞
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∑  

we have 

       [ ] 1
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−
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⎝ ⎠
∑                       (28) 

substituting from (8) and (9) into (28), we can express the thk ordinary moment of the thr
order statistics nrX :  say )( :

k
nrXE  as a liner combination of the thk  moments of the 

)(KEG distribution with different shape parameters. Therefore, the measures of skewness 
and kurtosis of the distribution of nrX :  can be calculated. 
 
 

5. LEAST SQUARES AND WEIGHTED LEAST SQUARES ESTIMATORS 
 
In this Section we provide the regression based method estimators of the unknown 
parameters of the Kumaraswamy exponentiated Lomax, which was originally suggested 
by Swain, Venkatraman and Wilson (1988) to estimate the parameters of beta 
distributions. It can be used some other cases also. Suppose nYY ,...,1  is a random sample 
of size n  from a distribution function (.)G  and suppose )(iY ; ni ,...,2,1=  denotes the 

ordered sample. The proposed method uses the distribution of )( )(iYG . For a sample of 
size n , we have 

( ) ( )( ) ( ) 2

( 1)( ) , ( )
1 ( 1) ( 2)j j

j j n jE G Y V G Y
n n n

− +
= =

+ + +
, 

( )( ) ( ) 2

( 1)( ), ( ) , for ,
( 1) ( 2)j k

j n kCov G Y G Y j k
n n

− +
= <

+ +
 

see Johnson, Kotz and Balakrishnan (1995). Using the expectations and the variances, two 
variants of the least squares methods can be used. 
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Method 1 (Least Squares Estimators). Obtain the estimators by minimizing 
2

( )1
( ,

1
n

jj

jG Y
n=

⎛ ⎞−⎜ ⎟+⎝ ⎠
∑                                                    (29) 

with respect to the unknown parameters. Therefore in case of KEG  distribution the least 
squares estimators of a,,θλ  and b , say ˆ

LSEλ , L̂SEθ , ˆLSEa  and  ˆ
LSEb  respectively, can be 

obtained by minimizing 
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jxe
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with respect to ,,, αθλ a  and b . 
 
Method 2 (Weighted Least Squares Estimators). The weighted least squares estimators 
can be obtained by minimizing 

2
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with respect to the unknown parameters, where 
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Therefore, in case of  KEG   distribution the weighted least squares estimators of  
a,,θλ  and b , say ŴLSEλ , ŴLSEθ , ˆWLSEa  and  ŴLSEb  respectively, can be obtained by 

minimizing 

( )[ ] 2

1 1
)1(111 ⎥⎦

⎤
⎢⎣
⎡

+
−+−−− −

=∑ n
jxew

bax
j
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j
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with respect to the unknown parameters only. 
  
 

6. ESTIMATION AND INFERENCE 
 
In this Section, we determine the maximum likelihood estimates (MLEs) of the 
parameters of the )(KEG distribution from complete samples only. Let nXXX ,...,, 21   
be a random sample of size n  from KEG ),,,( baθλ .The likelihood function for the 
vector of parameters Φ ),,,( baθλ=  can be written as 
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Taking the log-likelihood function for the vector of parameters Φ  ),,,( baθλ=  we get 
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The log-likelihood can be maximized either directly or by solving the nonlinear likelihood 
equations obtained by differentiating (32). The components of the score vector are given 
by 
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and 
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We can find the estimates of the unknown parameters by maximum likelihood method by 
setting these above non-linear equations (33) - (36) to zero and solve them simultaneously. 
Therefore, we have to use mathematical package to get the MLE of the unknown 
parameters. Also, all the second order derivatives exist. Thus we have the inverse 
dispersion matrix is given by 
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By solving this inverse dispersion matrix these solutions will yield asymptotic variance 
and covariances of these ML estimators for  , , 	and  Using (6.7), we approximate  

)%1(100 γ−   confidence intervals for  a,,θλ   and  b   are determined respectively as  

 

where γz  is the upper theγ100  percentile of the standard normal distribution. We noticed 

from Table 1 that all Mean Square Errors (MSEs) decrease as the sample size increases, w

hile they increase with increasing of the true parameter. 

 
 

7. APPLICATIONS TO REAL DATA SET 
 
In this Section we fit KEG to two real data sets and compare the fitness with the 
generalized inverse Weibull (GIW), inverse Weibull (IW) and Lindley Geometric (LG) 
distributions, whose densities are given by 
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Respectively. Specifically, we consider two data sets. The first set of data represents the 
remission times (in months) of a random sample of 128 bladder cancer patients reported in 
Lee and Wang (2003). See Table 2. The second set given in Table 3 represents the waiting 
times (in minutes) before service of 100 bank customers this data is examined and 
analyzed by Ghitany et al. (2008). 
 

Table 1. The MSE of the MLEs. 
 

KEG( , , ,a b θ λ ) Sample 
size(n) MSE( â ) MSE( b̂ ) MSE( θ̂ ) MSE ( λ̂ ) 

KEG(1,0.6,0.75,0.7) 

15 0.0344 0.5208 0.0193 0.3734 
25 0.0257 0.5073 0.0144 0.1520 
35 0.0239 0.5001 0.0135 0.1464 
45 0.0214 0.3735 0.012 0.142 
55 0.0077 0.4137 0.0043 0.1037 
65 0.0101 0.3666 0.0057 0.1231 
75 0.0095 0.2993 0.0054 0.1306 

KEG(1.5,0.9,1,0.7) 

15 0.6342 0.4139 0.2819 0.3588 
25 0.4574 0.2886 0.2033 0.2603 
35 0.3864 0.1333 0.1717 0.2121 
45 0.1997 0.1061 0.1279 0.2072 
55 0.1891 0.0977 0.084 0.1983 
65 0.1626 0.0472 0.0723 0.1814 
75 0.059 0.0381 0.0115 0.1028 

KEG(2,1.5,2.5,0.8) 

15 0.1346 0.8564 0.2103 0.0932 
25 0.0833 0.5589 0.1715 0.0719 
35 0.0508 0.3447 0.0793 0.0698 
45 0.0356 0.2953 0.0557 0.0482 
55 0.0334 0.2730 0.0522 0.0325 
65 0.0313 0.2348 0.0488 0.0221 
75 0.0300 0.1877 0.0372 0.0156 

 
 

Table 2. Remission times (in months) of a random sample of 128 bladder cancer patients. 
0.08 2.09 3.48 4.87 6.94 8.66 13.1123.630.20 2.23 3.52 4.98 6.97 
13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.8025.74 0.50 2.46 3.64 5.09 
9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.310.81 2.62 
5.32 7.32 10.06 14.7732.152.64 3.88 5.32 7.39 10.34 14.8334.26 0.90 
4.18 5.34 7.59 10.6615.9636.661.05 2.69 4.23 5.41 7.62 10.75 16.62 
1.19 2.75 4.26 5.41 7.63 17.1246.121.26 2.83 4.33 5.49 7.66 11.25 
79.05 1.35 2.87 5.62 7.87 11.6417.361.40 3.02 4.34 5.71 7.93 11.79 
1.46 4.40 5.85 8.26 11.9819.131.76 3.25 4.50 6.25 8.37 12.02 2.02 
4.51 6.54 8.53 12.0320.282.02 3.36 6.76 12.07 21.73 2.07 3.36 6.93 
  12.63 22.699.02 7.26 3.82 2.69 43.01 17.14 18.103.31 8.65 
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Table 3. Waiting times (in minutes) before service of 100 bank customers. 
 

 
 
Table 4.  Maximum-likelihood estimates, AIC, BIC and AICC values, and Kolmogorov- 

Smirnov statistics for the 128 bladder cancer patients data. 
Model MLEs Measures

λ θ β p a b K_S -2logL AIC BIC AICC
KEG 0.218 0.683   0.855 0.688 0.085 829.144 837.144 848.552 837.469
GIW 0.75 0.34 1.797  0.369 990.362 996.362 1004.918 996.555

IW 16.142 0.464   0.503 1000.238 1004.238 1009.942 1004.334
LG  0.192  0.026 0.121 1349.523 1898.027 1903.731 1898.123

 
 
Table5:  Maximum-likelihood estimates, AIC, BIC and AICC values, and Kolmogorov- 
Smirnov statistics for the waiting times (in minutes) before service of 100 bank customers. 
Model MLEs Measures 

λ θ β p a b K_S -2logL AIC BIC AICC 
KEG 0.387 0.977   1.254 0.448 0.037 634.249 642.249 652.67 642.671 
GIW 5.023 0.661 1.759    0.436 668.892 674.892 682.707 675.142 
IW 4.287 1.2     0.168 671.919 675.919 681.13 676.043 
LG  0.182  0.063   0.061 1074.762 1078.762 1083.973 1078.886 

 
 
In order to compare distributions, we consider the K_S (Kolmogorov-Smirnov) statistic, -
2logL, AIC (Akaike Information Criterion), AICC (Akaike Information Criterion 
Corrected), BIC (Bayesian Information Criterion). The best distribution corresponds to 
lower -2logL, AIC, BIC, AICC statistics value. 
Table 4 and Table 5 show parameter MLEs, the values of K_S, -2logL, AIC, BIC, AICC 
statistics for the three data set consecutively. From the above results, it is evident that the 
KEG distribution is the best distribution for fitting these data sets compared to other 
distributions considered here. And is a strong competitor to other distributions commonly 
used in literature for fitting lifetime data. 
A CDF plot compares the fitted densities of the models with the empirical curve of the 
observed data (Figure 4) and (Figure 5) The fitted CDF for the KEG model is closer to the 
empirical curve.  

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7 
2.9 3.1 3.2 3.3 3.5 3.6 4.0 4.1 4.2 4.2 
4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9 
5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3 
6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 8.0 
8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6 
9.7 9.8 10.710.911.011.011.111.2 11.2 11.5
11.9 12.412.512.913.013.113.313.6 13.7 13.9
14.1 15.415.417.317.318.118.218.4 18.9 19.0
19.9 20.621.321.421.923.027.031.6 33.1 38.5
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Figure 4. Empirical, fitted KEG cdf of the bladder cancer patients data

 

 

Figure 5. Empirical, fitted KEG cdf for the waiting times (in minutes) before service of 
100 bank customers 
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