• Title/Summary/Keyword: maximum conversion and yield

Search Result 91, Processing Time 0.031 seconds

Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis

  • Ra, Chae Hun;Jung, Jang Hyun;Sunwoo, In Young;Kang, Chang Han;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.856-862
    • /
    • 2015
  • The objective of this study was to optimize the slurry contents and salt concentrations for ethanol production from hydrolysates of the seaweed Eucheuma spinosum. A monosaccharide concentration of 44.2 g/l as 49.6% conversion of total carbohydrate of 89.1 g/l was obtained from 120 g dw/l seaweed slurry. Monosaccharides from E. spinosum slurry were obtained by thermal acid hydrolysis and enzymatic hydrolysis. Addition of activated carbon at 2.5% (w/v) and the adsorption time of 2 min were used in subsequent adsorption treatments to prevent the inhibitory effect of HMF. The adsorption surface area of the activated carbon powder was 1,400-1,600 m2/g and showed selectivity to 5-hydroxymethyl furfural (HMF) from monosaccharides. Candida tropicalis KCTC 7212 was cultured in yeast extract, peptone, glucose, and high-salt medium, and exposed to 80, 90, 100, and 110 practical salinity unit (psu) salt concentrations in the lysates. The 100 psu salt concentration showed maximum cell growth and ethanol production. The ethanol fermentations with activated carbon treatment and use of C. tropicalis acclimated to a high salt concentration of 100 psu produced 17.9 g/l of ethanol with a yield (YEtOH) of 0.40 from E. spinosum seaweed.

Production of lactic acid by Lactobacillus paracasei isolated from button mushroom bed

  • Kim, Sun-Joong;Seo, Hye-Kyung;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.11 no.4
    • /
    • pp.187-193
    • /
    • 2013
  • A galactose fermentation bacterium producing lactose from red seaweed, which was known well to compromise the galactose as main reducing sugar, was isolated from button mushroom bed in Buyeo-Gun, Chungchugnamdo province. The lactic acid bacteria MONGB-2 was identified as Lactobacillus paracasei subsp. tolerans by analysis of 16S rRNA gene sequence. When the production of lactic acid and acetic acid by L. paracasei MONGB-2 was investigated by HPLC analysis with various carbohydrates, the strain MONGB-2 efficiently convert the glucose and galactose to lactic acid with the yield of 18.86 g/L and 18.23 g/L, respectively and the ratio of lactic acid to total organic acids was 1.0 and 0.91 g/g for both substrates. However, in the case of acetic acid fermentation, other carbohydrates besides galactose and red seaweed hydrolysate could not be totally utilized as carbon sources for acetic acid production by the strain. The lactic acid production from glucose and galactose in the fermentation time courses was gradually enhanced upto 60 h fermentation and the maximal concentration reached to be 16-18 g/L from both substrates after 48 h of fermentation. The initial concentration of glucose and galactose were completely consumed within 36 h of fermentation, of which the growth of cell also was maximum level. In addition, the bioconversion of lactic acid from the red seaweed hydrolysate by L. paracasei MONGB-2 appeared to be about 20% levels of the initial substrates concentration and this results were entirely lower than those of galactose and glucose showed about 60% of conversion. The apparent results showed that L. paracasei MONGB-2 could produce the lactic acid with glucose as well as galactose by the homofermentation through EMP pathway.

Optimization of soaking in aqueous ammonia pretreatment of canola residues for sugar production (당 생산을 위한 카놀라 부산물의 암모니아 침지 전처리 공정의 최적화)

  • Yoo, Hah-Young;Kim, Sung Bong;Lee, Sang Jun;Lee, Ja Hyun;Suh, Young Joon;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Bioenergy production from lignocellulosic biomass and agriculture wastes have been attracted because of its sustainable and non-edible source. Especially, canola is considered as one of the best feedstock for renewable fuel production. Oil extracted canola and its agriculture residues are reuseable for bioethanol production. However, a pretreatment step is required before enzymatic hydrolysis to disrupt recalcitrant lignocellulosic matrix. To increase the sugar conversion, more efficient pretreatment process was necessary for removal of saccharification barriers such as lignin. Alkaline pretreatment makes the lignocellulose swollen through solvation and induces more porous structure for enzyme access. In our previous work, aqueous ammonia (1~20%) was utilized for alkaline reagent to increase the crystallinity of canola residues pretreatment. In this study, significant factors for efficient soaking in aqueous ammonia pretreatment on canola residues was optimized by using the response surface method (RSM). Based on the fundamental experiments, the real values of factors at the center (0) were determined as follows; $70^{\circ}C$ of temperature, 17.5% of ammonia concentration and 18 h of reaction time in the experiment design using central composition design (CCD). A statistical model predicted that the highest removal yield of lignin was 54% at the following optimized reaction conditions: $72.68^{\circ}C$ of temperature, 18.30% of ammonia concentration and 18.30 h of reaction time. Finally, maximum theoretical yields of soaking in aqueous ammonia pretreatment were 42.23% of glucose and 22.68% of xylose.

  • PDF

Oxychlorination of methane over FeOx/CeO2 catalysts

  • Kim, Jeongeun;Ryou, Youngseok;Hwang, Gyohyun;Bang, Jungup;Jung, Jongwook;Bang, Yongju;Kim, Do Heui
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2185-2190
    • /
    • 2018
  • Methane activation through oxychlorination is in the spotlight due to the relatively mild reaction conditions at atmospheric pressure and in the temperature range of $450-550^{\circ}C$. Although $CeO_2$ is known to exhibit good activity for methane oxychlorination, significant amounts of by-products such as $CO_2$, CO and carbon deposits are produced during the reaction over $CeO_2$. We investigated the effect of iron in $FeO_x/CeO_2$ catalysts on methane oxychlorination. $FeO_x/CeO_2$ with 3 wt% iron shows the maximum yield at $510^{\circ}C$ with 23% conversion of methane and 65% selectivity of chloromethane. XRD and $H_2$ TPR results indicate that iron-cerium solid solution was formed, resulting in the production of more easily reduced cerium oxide and the suppression of catalysts sintering during the reaction. Furthermore, the selectivity of by-products decreased more significantly over $FeO_x/CeO_2$ than cerium oxide, which can be attributed to the facilitation of HCl oxidation arising from the enhanced reducibility of the former sample.

Biphasic Dynamic Kinetic Resolution of ρ,α-Dimethyl Benzyl Alcohol over Zeolite-Enzyme Catalysts (제올라이트-효소 촉매를 이용한 ρ,α-Dimethyl Benzyl Alcohol의 2상 동적 속도론적 광학분할)

  • Cha, Yeon-Ju;Ko, Moon-Kyu;Park, Yeung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.658-664
    • /
    • 2006
  • $\rho$, $\alpha$-dimethyl benzyl alcohol was resolved by the biphasic dynamic kinetic resolution (DKR). Acidic zeolite was used as a racemization catalyst while immobilized enzyme was employed for kinetic resolution. The effects of the process variables including nature of acyl donor, reaction temperature, substrate concentration, ratio of the two catalysts and stirring rate on the conversion and enantiomeric purity of the product were investigated. In DKR of $\rho$, $\alpha$-dimethyl benzyl alcohol, the product of 99% ee was obtained with a maximum yield of 88%. The high performance of the catalyst system was maintained in the condition of higher TON and under repeated use.

Saccharification Characteristics and Kinetic Analysis of Modified Cellulase with a Copolymer (공중합 고분자를 이용한 수식셀룰라아제의 당화 특성 및 반응속도에 관한 연구)

  • 전영호;신호철박진원
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.712-717
    • /
    • 1996
  • Cellulase was modified with synthetic copolymers of polyoxyethylene derivative and maleic acid anhydride. The saccharification characteristics and enzymatic reaction kinetic mechanism of modified and native cellulases were observed. In modification reaction of cellulase, degree of modification(DM) increased, as mass ratio of copolymers to enzyme increased. Maximum DM was 55% at mass ratio of 4 and remained activity was 75%. In saccharification experiment modified enzyme had maintained higher stability than native enzyme over all the reaction and the final conversion yield of modified enzyme was greater than that of native enzyme. Numerical simulation based on the reaction mechanism considering enzymatic deactivation was performed. Modified enzyme had kept higher free enzyme concentration over all the reaction than that of native enzyme. Comparing calculation values with experimental data, calculation values were in accordance with experimental data.

  • PDF

Saccharification of lignocellulosics by Supercritical Water (초임계수를 이용한 목질바이오매스의 당화 특성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Jo, Tae-Su;Han, Gyu-Sung;Choi, Don-Ha
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.38-45
    • /
    • 2007
  • To characterize thermo-chemical feature of sugar conversion of woody biomass, poplar wood ($Populus\;alba{\times}glandulosa$) powder was treated with supercritical water system. Supercritical water treatment (SCWT) was performed for 60 seconds at different temperatures (subcritical zone 350; supercritical zone $300,\;400,\;425^{\circ}C$) under two pressures $230{\pm}10atm$ as well as $330{\pm}10atm$, respectively, using flow type system. After separation of solid residues from SCWT products, the monomeric sugars in aqueous part converted from poplar wood powder were quantitatively determined by high performance anionic exchange chromatography [HPAEC] equipped with PAD detector and Carbo Pac PA10 column. As the temperature treated increased, the degradation of poplar wood powder was enhanced and ca 83% of woody biomass was dissolved into the water at $425^{\circ}C$. However, the pressure didn't help the degradation of biomass components. At subcritical temperature range, xylose was first formed by degradation of xylan, which is main hemicellulose component in hardwood species, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical temperature. In the supercritical water system the maximum yield of monomeric sugars amounts to ca. 7.3% based on oven dried wood weight at $425^{\circ}C$.

  • PDF

Thermodynamic Analysis of DME Steam Reforming for Hydrogen Production (수소제조를 위한 DME 수증기 개질반응의 열역학적 특성)

  • Park, Chan-Hyun;Kim, Kyoung-Suk;Jun, Jin-Woo;Cho, Sung-Yul;Lee, Yong-Kul
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.186-190
    • /
    • 2009
  • This study is purposed to analyze thermodynamic properties on the hydrogen production by dimethyl ether steam reforming. Various reaction conditions of temperatures (300~1500 K), feed compositions (steam/carbon = 1~7), and pressures (1, 5, 10 atm) were applied to investigate the effects of the reaction conditions on the thermodynamic properties of dimethyl ether steam reforming. An endothermic steam reforming competed with an exothermic water gas shift reaction and an exothermic methanation within the applied reaction condition. Hydrogen production was initiated at the temperature of 400 K and the production rate was promoted at temperatures exceeding 550 K. An increase of steam to carbon ratio (S/C) in feed mixture over 1.5 resulted in the increase of the water gas shift reaction, which lowered the formation of carbon monoxide. The maximum hydrogen yield with minimizing loss of thermodynamic conversion efficiency was achieved at the reaction conditions of a temperature of 900 K and a steam to carbon ratio of 3.0.

Research Trend of Bio-oil Production from Biomass by using Fast Pyrolysis (바이오매스로부터 급속 열분해를 통한 바이오오일의 생산기술 연구동향)

  • Kim, Jae-Kon;Park, Jo Yong;Yim, Eui Soon;Ha, Jong Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.453-465
    • /
    • 2014
  • The paper provides a review on bio-oil production technology from biomass by using fast pyrolysis to use heating fuel, power fuel and transport fuel. One of the most promising methods for a small scale conversion of biomass into liquid fuels is fast pyrolysis. In fast pyrolysis, bio-oil is produced by rapidly heating biomass to intermediate temperature ($450{\sim}600^{\circ}C$) in the absence of any external oxygen followed by rapid quenching of the resulting vapor. Bio-oil can be produced in weight yield maximum 75 wt% of the original dry biomass and bio-oils typically contain 60-75% of the initial energy of the biomass. In this study, it is described focusing on the characterization of feedstock, production principle of bio-oil, bio-oil's property and it's application sector.

Optimization of Production of Trehaolse from Maltose using Recombinant Trehalose Synthase from Thermus caldophilus GK24 (재조합 트레할로스 합성효소에 의한 맥아당으로부터 트레할로스 생산 최적화)

  • 조연정;고석훈;이대실;신현재
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.8-13
    • /
    • 2003
  • Recombinant trehalose synthase from Thermus caldophilus GK24 showed an ability to produce trehalose from maltose. The activity of the partially purified enzyme was not influenced by most metal ions at 1 mM but was inhibited by 10 mM $Co^{2+}$, $Mn^{2+}$, and $Fe^{2+}$. Enzyme activity varied during prolonged reaction due to changes in the environmental conditions. Thus, the reaction was carried out for an extended time with optimized conditions of $45^{\circ}C$ and pH 7.0. An yield of 32.9% was reached at $60^{\circ}C$ after reaction for 22 h, and, maximum trehalose conversion (69.2%) was attained at $25^{\circ}C$. The yields obtained using enzyme dosages of 10, 25, and 50 U/g were 62.3, 62.3 and 59.0 %, respectively, though the initial conversion rate was higher when the higher dose was used. Similar profiles of trehalose production yields were observed with reaction working volumes of 10 ml to 2,000 ml.