Browse > Article

Thermodynamic Analysis of DME Steam Reforming for Hydrogen Production  

Park, Chan-Hyun (Department of Chemical Engineering, Dankook University)
Kim, Kyoung-Suk (Department of Chemical Engineering, Dankook University)
Jun, Jin-Woo (Department of Chemical Engineering, Dankook University)
Cho, Sung-Yul (Department of Chemical Engineering, Dankook University)
Lee, Yong-Kul (Department of Chemical Engineering, Dankook University)
Publication Information
Applied Chemistry for Engineering / v.20, no.2, 2009 , pp. 186-190 More about this Journal
Abstract
This study is purposed to analyze thermodynamic properties on the hydrogen production by dimethyl ether steam reforming. Various reaction conditions of temperatures (300~1500 K), feed compositions (steam/carbon = 1~7), and pressures (1, 5, 10 atm) were applied to investigate the effects of the reaction conditions on the thermodynamic properties of dimethyl ether steam reforming. An endothermic steam reforming competed with an exothermic water gas shift reaction and an exothermic methanation within the applied reaction condition. Hydrogen production was initiated at the temperature of 400 K and the production rate was promoted at temperatures exceeding 550 K. An increase of steam to carbon ratio (S/C) in feed mixture over 1.5 resulted in the increase of the water gas shift reaction, which lowered the formation of carbon monoxide. The maximum hydrogen yield with minimizing loss of thermodynamic conversion efficiency was achieved at the reaction conditions of a temperature of 900 K and a steam to carbon ratio of 3.0.
Keywords
hydrogen; dimethyl ether; steam reforming; thermodynamic equilibrium;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 S. Adhikari, S. Fernando, S. R. Gwaltney, S. D. Filip To, R. M. Bricka, P. H. Steele, and A. Haryanto, Int. J. Hydrogen Energy, 32, 2875 (2007)   DOI   ScienceOn
2 A. Casanovas, M. Dom$\acute{i}$nguez, C. Ledesma, E. L$\acute{o}$pez, and J. Llorca, Catal. Today, In Press
3 L. Huang, J. Xie, R. Chen, D. Chu, W. Chu, and A. T. Hsu, Int. J. Hydrogen Energy, 33, 7448 (2008)   DOI   ScienceOn
4 K. Faungnawakij, N. Shimoda, T. Fukunaga, R. Kikuchi, and K. Eguchi, Appl. Catal., A, 341, 139 (2008)   DOI   ScienceOn
5 C. C. R. S. Rossi, C. G. Alonso, O. A. C. Antunes, L. Cardozo- Filho, and R. Guirardello, Int. J. Hydrogen Energy, In Press
6 A. Demirbas, Energy, Convers. Manage., 49, 2106 (2008)   DOI   ScienceOn
7 K. Essaki, T. Muramatsu, and M. Kato, Int. J. Hydrogen Energy, 33, 6612 (2008)   DOI   ScienceOn
8 K. Faungnawakij, Y. Tanaka, N. Shimoda, T. Fukunaga, R. Kikuchi, and K. Eguchi, Appl. Catal., B, 74, 144 (2007)   DOI   ScienceOn
9 J. A. Torres, J. Llorca, A. Casanovas, M. Dom$\acute{i}$nguez, J. Salvad\acute{o}, and D. Montan\acute{e}; J. Power Sources, 169, 158 (2007)   DOI   ScienceOn
10 K. Faungnawakij, R. Kikuchi, and K. Eguchi, J. Power Sources, 164, 73 (2007)   DOI   ScienceOn
11 J. Rass-Hansen, R. Johansson, M. Møller, and C. H. Christensen, Int. J. Hydrogen Energy, 33, 4547 (2008)   DOI   ScienceOn
12 G. Rabenstein and V. Hacker, J. Power Sources, 185, 1293 (2008)   DOI   ScienceOn
13 T. A. Semelsberger and R. L. Borup, J. Power Sources, 155, 340 (2006)   DOI   ScienceOn