DOI QR코드

DOI QR Code

Oxychlorination of methane over FeOx/CeO2 catalysts

  • Kim, Jeongeun (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Ryou, Youngseok (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Hwang, Gyohyun (Corporate R&D, LG Chem R&D Campus Daejeon, Ltd.) ;
  • Bang, Jungup (Corporate R&D, LG Chem R&D Campus Daejeon, Ltd.) ;
  • Jung, Jongwook (Corporate R&D, LG Chem R&D Campus Daejeon, Ltd.) ;
  • Bang, Yongju (Corporate R&D, LG Chem R&D Campus Daejeon, Ltd.) ;
  • Kim, Do Heui (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
  • Received : 2018.05.29
  • Accepted : 2018.07.26
  • Published : 2018.11.30

Abstract

Methane activation through oxychlorination is in the spotlight due to the relatively mild reaction conditions at atmospheric pressure and in the temperature range of $450-550^{\circ}C$. Although $CeO_2$ is known to exhibit good activity for methane oxychlorination, significant amounts of by-products such as $CO_2$, CO and carbon deposits are produced during the reaction over $CeO_2$. We investigated the effect of iron in $FeO_x/CeO_2$ catalysts on methane oxychlorination. $FeO_x/CeO_2$ with 3 wt% iron shows the maximum yield at $510^{\circ}C$ with 23% conversion of methane and 65% selectivity of chloromethane. XRD and $H_2$ TPR results indicate that iron-cerium solid solution was formed, resulting in the production of more easily reduced cerium oxide and the suppression of catalysts sintering during the reaction. Furthermore, the selectivity of by-products decreased more significantly over $FeO_x/CeO_2$ than cerium oxide, which can be attributed to the facilitation of HCl oxidation arising from the enhanced reducibility of the former sample.

Keywords

Acknowledgement

Supported by : LG Chem

References

  1. V. Paunovic, G. Zichittella, M. Moser, A. P. Amrute and J. PerezRamirez, Nat. Chem., 8, 803 (2016). https://doi.org/10.1038/nchem.2522
  2. R. Horn and R. Schlogl, Catal. Lett., 145, 23 (2015). https://doi.org/10.1007/s10562-014-1417-z
  3. P. Schwach, X. Pan and X. Bao, Chem. Rev., 117, 8497 (2017). https://doi.org/10.1021/acs.chemrev.6b00715
  4. E. Peringer, S. G. Podkolzin, M. E. Jones, R. Olindo and J. A. Lercher, Top. Catal., 38, 211 (2006). https://doi.org/10.1007/s11244-006-0085-7
  5. Z. Li, G. Zhou, C. Li and T. Cheng, Catal. Commun., 40, 42 (2013). https://doi.org/10.1016/j.catcom.2013.05.020
  6. C. Li, G. Zhou, L. Wang, Z. Li, Y. Xue and T. Cheng, Catal. Commun., 13, 22 (2011). https://doi.org/10.1016/j.catcom.2011.06.005
  7. N. B. Muddada, T. Fuglerud, C. Lamberti and U. Olsbye, Top. Catal., 57, 741 (2014). https://doi.org/10.1007/s11244-013-0231-y
  8. V. Paunovic, G. Zichittella, S. Mitchell, R. Hauert and J. PerezRamirez, ACS Catal., 8, 291 (2017).
  9. V. Paunovic, G. Zichittella, R. Verel, A. P. Amrute and J. PerezRamirez, Angew. Chem. Int. Ed., 55, 15619 (2016). https://doi.org/10.1002/anie.201608165
  10. V. Paunovic, M. Artusi, R. Verel, F. Krumeich, R. Hauert and J. Perez-Ramirez, J. Catal., 363, 69 (2018). https://doi.org/10.1016/j.jcat.2018.04.001
  11. L. Xueju, L. Jie, Z. Guangdong, Z. Kaiji, L. Wenxing and C. Tiexin, Catal. Lett., 100, 153 (2005). https://doi.org/10.1007/s10562-004-3448-3
  12. W. Taifan and J. Baltrusaitis, Appl. Catal. B Environ., 198, 525 (2016). https://doi.org/10.1016/j.apcatb.2016.05.081
  13. R. Lin, A. Amrute and J. Perez-Ramirez, Chem. Rev., 117, 4182 (2017). https://doi.org/10.1021/acs.chemrev.6b00551
  14. B. Wang, S. Albarracin-Suazo, Y. Pagan-Torres and E. Nikolla, Catal. Today, 285, 147 (2017). https://doi.org/10.1016/j.cattod.2017.01.023
  15. R. Lin, Y. Ding, L. Gong, J. Li, W. Chen, L. Yan and Y. Lu, Appl. Catal. A Gen., 353, 87 (2009). https://doi.org/10.1016/j.apcata.2008.10.029
  16. V. Paunovic, R. Lin, M. Scharfe, A. P. Amrute, S. Mitchell, R. Hauert and J. Perez-Ramirez, Angew. Chem. Int. Ed., 56, 9923 (2017).
  17. G. Zichittella, V. Paunovic, A. P. Amrute and J. Perez-Ramirez, ACS Catal., 7, 1805 (2017). https://doi.org/10.1021/acscatal.6b03600
  18. J. He, T. Xu, Z. Wang, Q. Zhang, W. Deng and Y. Wang, Angew. Chem. Int. Ed., 51, 2438 (2012). https://doi.org/10.1002/anie.201104071
  19. A. P. Amrute, C. Mondelli, M. Moser, G. Novell-Leruth, N. Lopez, D. Rosenthal, R. Farra, M. E. Schuster, D. Teschner and T. Schmidt, J. Catal., 286, 287 (2012). https://doi.org/10.1016/j.jcat.2011.11.016
  20. A. P. Amrute, C. Mondelli, M. A. G. Hevia and J. Perez-Ramirez, ACS Catal., 1, 583 (2011). https://doi.org/10.1021/cs200075j
  21. M. Capdevila-Cortada, G. Vile, D. Teschner, J. Perez-Ramirez and N. Lopez, Appl. Catal. B Environ., 197, 299 (2016). https://doi.org/10.1016/j.apcatb.2016.02.035
  22. C. Li, Y. Sun, I. Djerdj, P. Voepel, C.-C. Sack, T. Weller, R. d. Ellinghaus, J. Sann, Y. Guo and B. M. Smarsly, ACS Catal., 7, 6453 (2017). https://doi.org/10.1021/acscatal.7b01618
  23. W. Wang, Q. Zhu, F. Qin, Q. Dai and X. Wang, Chem. Eng. J., 333, 226 (2018). https://doi.org/10.1016/j.cej.2017.08.065
  24. A. S. Reddy, C.-Y. Chen, C.-C. Chen, S.-H. Chien, C.-J. Lin, K.-H. Lin, C.-L. Chen and S.-C. Chang, J. Mol. Catal. A Chem., 318, 60 (2010). https://doi.org/10.1016/j.molcata.2009.11.008
  25. S. G. Podkolzin, E. E. Stangland, M. E. Jones, E. Peringer and J. A. Lercher, J. Am. Chem. Soc., 129, 2569 (2007). https://doi.org/10.1021/ja066913w
  26. Y. Jiang, C. Bao, Q. Liu, G. Liang, M. Lu and S. Ma, Catal. Commun., 103, 96 (2018). https://doi.org/10.1016/j.catcom.2017.10.002
  27. T. Yamashita and P. Hayes, Appl. Surf. Sci., 254, 2441 (2008). https://doi.org/10.1016/j.apsusc.2007.09.063
  28. P. Mills and J. Sullivan, J. Phys. D Appl. Phys., 16, 723 (1983). https://doi.org/10.1088/0022-3727/16/5/005
  29. P. C. Graat and M. A. Somers, Appl. Surf. Sci., 100, 36 (1996).
  30. S. Roosendaal, B. Van Asselen, J. Elsenaar, A. Vredenberg and F. Habraken, Surf. Sci., 442, 329 (1999). https://doi.org/10.1016/S0039-6028(99)01006-7
  31. Thermo Fisher Scientific Inc., http://xpssimplified.com/elements/iron,php (accessed 22 January 2018).
  32. M. F. Mohamad, A. Ramli and S. Yusup, AIP Conf. Proc., 1502, 288 (2012).
  33. Z. Cui, J. Fan, H. Duan, J. Zhang, Y. Xue and Y. Tan, Korean J. Chem. Eng., 34, 29 (2017). https://doi.org/10.1007/s11814-016-0212-5
  34. F. Perez-Alonso, M. Lopez Granados, M. Ojeda, P. Terreros, S. Rojas, T. Herranz, J. Fierro, M. Gracia and J. Gancedo, Chem. Mater., 17, 2329 (2005). https://doi.org/10.1021/cm0477669
  35. Y. Li, B. Zhang, X. Tang, Y. Xu and W. Shen, Catal. Commun., 7, 380 (2006). https://doi.org/10.1016/j.catcom.2005.12.002
  36. A. Trovarelli, Commun. Inorg. Chem., 20, 263 (1999). https://doi.org/10.1080/02603599908021446
  37. L. Kongzhai, W. Hua, W. Yonggang and L. Mingchun, J. Rare Earths, 26, 245 (2008). https://doi.org/10.1016/S1002-0721(08)60074-5
  38. W. Cai, F. Chen, X. Shen, L. Chen and J. Zhang, Appl. Catal. B Environ., 101, 160 (2010). https://doi.org/10.1016/j.apcatb.2010.09.031
  39. L. Tang, D. Yamaguchi, N. Burke, D. Trimm and K. Chiang, Catal. Commun., 11, 1215 (2010). https://doi.org/10.1016/j.catcom.2010.07.004

Cited by

  1. Rational Design of Transition Metal Co‐Doped Ceria Catalysts for Low‐Temperature CO Oxidation vol.11, pp.9, 2019, https://doi.org/10.1002/cctc.201900178
  2. Up-conversion Luminescence Characterization of CeO2:Ho3+/Yb3+ Particles Prepared by Spray Pyrolysis vol.3, pp.3, 2018, https://doi.org/10.3807/copp.2019.3.3.248
  3. Design of Ceria Catalysts for Low‐Temperature CO Oxidation vol.12, pp.1, 2018, https://doi.org/10.1002/cctc.201901787
  4. Low temperature CO oxidation by doped cerium oxide electrospun fibers vol.7, pp.None, 2020, https://doi.org/10.1186/s40580-020-00234-7
  5. Mechanistic Insights into the Lanthanide-Catalyzed Oxychlorination of Methane as Revealed by Operando Spectroscopy vol.11, pp.None, 2018, https://doi.org/10.1021/acscatal.1c00393
  6. Enhanced activity and selectivity of supported europium oxychloride catalysts for ethylene oxychlorination with HCl vol.516, pp.None, 2018, https://doi.org/10.1016/j.mcat.2021.111977