Browse > Article
http://dx.doi.org/10.1007/s11814-018-0135-4

Oxychlorination of methane over FeOx/CeO2 catalysts  

Kim, Jeongeun (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
Ryou, Youngseok (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
Hwang, Gyohyun (Corporate R&D, LG Chem R&D Campus Daejeon, Ltd.)
Bang, Jungup (Corporate R&D, LG Chem R&D Campus Daejeon, Ltd.)
Jung, Jongwook (Corporate R&D, LG Chem R&D Campus Daejeon, Ltd.)
Bang, Yongju (Corporate R&D, LG Chem R&D Campus Daejeon, Ltd.)
Kim, Do Heui (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2185-2190 More about this Journal
Abstract
Methane activation through oxychlorination is in the spotlight due to the relatively mild reaction conditions at atmospheric pressure and in the temperature range of $450-550^{\circ}C$. Although $CeO_2$ is known to exhibit good activity for methane oxychlorination, significant amounts of by-products such as $CO_2$, CO and carbon deposits are produced during the reaction over $CeO_2$. We investigated the effect of iron in $FeO_x/CeO_2$ catalysts on methane oxychlorination. $FeO_x/CeO_2$ with 3 wt% iron shows the maximum yield at $510^{\circ}C$ with 23% conversion of methane and 65% selectivity of chloromethane. XRD and $H_2$ TPR results indicate that iron-cerium solid solution was formed, resulting in the production of more easily reduced cerium oxide and the suppression of catalysts sintering during the reaction. Furthermore, the selectivity of by-products decreased more significantly over $FeO_x/CeO_2$ than cerium oxide, which can be attributed to the facilitation of HCl oxidation arising from the enhanced reducibility of the former sample.
Keywords
Methane; Oxychlorination; $FeO_x/CeO_2$; Reducibility of Surface Cerium; Chloromethane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. P. Amrute, C. Mondelli, M. A. G. Hevia and J. Perez-Ramirez, ACS Catal., 1, 583 (2011).   DOI
2 M. Capdevila-Cortada, G. Vile, D. Teschner, J. Perez-Ramirez and N. Lopez, Appl. Catal. B Environ., 197, 299 (2016).   DOI
3 C. Li, Y. Sun, I. Djerdj, P. Voepel, C.-C. Sack, T. Weller, R. d. Ellinghaus, J. Sann, Y. Guo and B. M. Smarsly, ACS Catal., 7, 6453 (2017).   DOI
4 W. Wang, Q. Zhu, F. Qin, Q. Dai and X. Wang, Chem. Eng. J., 333, 226 (2018).   DOI
5 A. S. Reddy, C.-Y. Chen, C.-C. Chen, S.-H. Chien, C.-J. Lin, K.-H. Lin, C.-L. Chen and S.-C. Chang, J. Mol. Catal. A Chem., 318, 60 (2010).   DOI
6 S. G. Podkolzin, E. E. Stangland, M. E. Jones, E. Peringer and J. A. Lercher, J. Am. Chem. Soc., 129, 2569 (2007).   DOI
7 Y. Jiang, C. Bao, Q. Liu, G. Liang, M. Lu and S. Ma, Catal. Commun., 103, 96 (2018).   DOI
8 T. Yamashita and P. Hayes, Appl. Surf. Sci., 254, 2441 (2008).   DOI
9 P. Mills and J. Sullivan, J. Phys. D Appl. Phys., 16, 723 (1983).   DOI
10 P. C. Graat and M. A. Somers, Appl. Surf. Sci., 100, 36 (1996).
11 S. Roosendaal, B. Van Asselen, J. Elsenaar, A. Vredenberg and F. Habraken, Surf. Sci., 442, 329 (1999).   DOI
12 Thermo Fisher Scientific Inc., http://xpssimplified.com/elements/iron,php (accessed 22 January 2018).
13 M. F. Mohamad, A. Ramli and S. Yusup, AIP Conf. Proc., 1502, 288 (2012).
14 Z. Cui, J. Fan, H. Duan, J. Zhang, Y. Xue and Y. Tan, Korean J. Chem. Eng., 34, 29 (2017).   DOI
15 L. Kongzhai, W. Hua, W. Yonggang and L. Mingchun, J. Rare Earths, 26, 245 (2008).   DOI
16 F. Perez-Alonso, M. Lopez Granados, M. Ojeda, P. Terreros, S. Rojas, T. Herranz, J. Fierro, M. Gracia and J. Gancedo, Chem. Mater., 17, 2329 (2005).   DOI
17 Y. Li, B. Zhang, X. Tang, Y. Xu and W. Shen, Catal. Commun., 7, 380 (2006).   DOI
18 A. Trovarelli, Commun. Inorg. Chem., 20, 263 (1999).   DOI
19 W. Cai, F. Chen, X. Shen, L. Chen and J. Zhang, Appl. Catal. B Environ., 101, 160 (2010).   DOI
20 L. Tang, D. Yamaguchi, N. Burke, D. Trimm and K. Chiang, Catal. Commun., 11, 1215 (2010).   DOI
21 E. Peringer, S. G. Podkolzin, M. E. Jones, R. Olindo and J. A. Lercher, Top. Catal., 38, 211 (2006).   DOI
22 V. Paunovic, G. Zichittella, M. Moser, A. P. Amrute and J. PerezRamirez, Nat. Chem., 8, 803 (2016).   DOI
23 R. Horn and R. Schlogl, Catal. Lett., 145, 23 (2015).   DOI
24 P. Schwach, X. Pan and X. Bao, Chem. Rev., 117, 8497 (2017).   DOI
25 Z. Li, G. Zhou, C. Li and T. Cheng, Catal. Commun., 40, 42 (2013).   DOI
26 V. Paunovic, M. Artusi, R. Verel, F. Krumeich, R. Hauert and J. Perez-Ramirez, J. Catal., 363, 69 (2018).   DOI
27 C. Li, G. Zhou, L. Wang, Z. Li, Y. Xue and T. Cheng, Catal. Commun., 13, 22 (2011).   DOI
28 N. B. Muddada, T. Fuglerud, C. Lamberti and U. Olsbye, Top. Catal., 57, 741 (2014).   DOI
29 V. Paunovic, G. Zichittella, S. Mitchell, R. Hauert and J. PerezRamirez, ACS Catal., 8, 291 (2017).
30 V. Paunovic, G. Zichittella, R. Verel, A. P. Amrute and J. PerezRamirez, Angew. Chem. Int. Ed., 55, 15619 (2016).   DOI
31 L. Xueju, L. Jie, Z. Guangdong, Z. Kaiji, L. Wenxing and C. Tiexin, Catal. Lett., 100, 153 (2005).   DOI
32 W. Taifan and J. Baltrusaitis, Appl. Catal. B Environ., 198, 525 (2016).   DOI
33 R. Lin, A. Amrute and J. Perez-Ramirez, Chem. Rev., 117, 4182 (2017).   DOI
34 B. Wang, S. Albarracin-Suazo, Y. Pagan-Torres and E. Nikolla, Catal. Today, 285, 147 (2017).   DOI
35 R. Lin, Y. Ding, L. Gong, J. Li, W. Chen, L. Yan and Y. Lu, Appl. Catal. A Gen., 353, 87 (2009).   DOI
36 V. Paunovic, R. Lin, M. Scharfe, A. P. Amrute, S. Mitchell, R. Hauert and J. Perez-Ramirez, Angew. Chem. Int. Ed., 56, 9923 (2017).
37 G. Zichittella, V. Paunovic, A. P. Amrute and J. Perez-Ramirez, ACS Catal., 7, 1805 (2017).   DOI
38 J. He, T. Xu, Z. Wang, Q. Zhang, W. Deng and Y. Wang, Angew. Chem. Int. Ed., 51, 2438 (2012).   DOI
39 A. P. Amrute, C. Mondelli, M. Moser, G. Novell-Leruth, N. Lopez, D. Rosenthal, R. Farra, M. E. Schuster, D. Teschner and T. Schmidt, J. Catal., 286, 287 (2012).   DOI