• Title/Summary/Keyword: matrix learning

Search Result 351, Processing Time 0.026 seconds

MIMO Fuzzy Reasoning Method using Learning Ability (학습기능을 사용한 MIMO 퍼지추론 방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.175-178
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.

  • PDF

On the Bayesian Fecision Making Model of 2-Person Coordination Game (2인 조정게임의 베이지안 의사결정모형)

  • 김정훈;정민용
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.3
    • /
    • pp.113-143
    • /
    • 1997
  • Most of the conflict problems between 2 persons can be represented as a bi-matrix game, because player's utilities, in general, are non-zero sum and change according to the progress of game. In the bi-matrix game the equilibrium point set which satisfies the Pareto optimality can be a good bargaining or coordination solution. Under the condition of incomplete information about the risk attitudes of the players, the bargaining or coordination solution depends on additional elements, namely, the players' methods of making inferences when they reach a node in the extensive form of the game that is off the equilibrium path. So the investigation about the players' inference type and its effects on the solution is essential. In addition to that, the effect of an individual's aversion to risk on various solutions in conflict problems, as expressed in his (her) utility function, must be considered. Those kinds of incomplete information make decision maker Bayesian, since it is often impossible to get correct information for building a decision making model. In Baysian point of view, this paper represents an analytic frame for guessing and learning opponent's attitude to risk for getting better reward. As an example for that analytic frame. 2 persons'bi-matrix game is considered. This example explains that a bi-matrix game can be transformed into a kind of matrix game through the players' implicitly cooperative attitude and the need of arbitration.

  • PDF

Model-free $H_{\infty}$ Control of Linear Discrete-time Systems using Q-learning and LMI Based on I/O Data (입출력 데이터 기반 Q-학습과 LMI를 이용한 선형 이산 시간 시스템의 모델-프리 $H_{\infty}$ 제어기 설계)

  • Kim, Jin-Hoon;Lewis, F.L.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1411-1417
    • /
    • 2009
  • In this paper, we consider the design of $H_{\infty}$ control of linear discrete-time systems having no mathematical model. The basic approach is to use Q-learning which is a reinforcement learning method based on actor-critic structure. The model-free control design is to use not the mathematical model of the system but the informations on states and inputs. As a result, the derived iterative algorithm is expressed as linear matrix inequalities(LMI) of measured data from system states and inputs. It is shown that, for a sufficiently rich enough disturbance, this algorithm converges to the standard $H_{\infty}$ control solution obtained using the exact system model. A simple numerical example is given to show the usefulness of our result on practical application.

Rotation Invariant Tracking-Learning-Detection System (회전에 강인한 실시간 TLD 추적 시스템)

  • Choi, Wonju;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.865-873
    • /
    • 2016
  • In recent years, Tracking-Learning-Detection(TLD) system has been widely used as a detection and tracking algorithm for vision sensors. While conventional algorithms are vulnerable to occlusion, and changes in illumination and appearances, TLD system is capable of robust tracking by conducting tracking, detection, and learning in real time. However, the detection and tracking algorithms of TLD system utilize rotation-variant features, and the margin of tracking error becomes greater when an object makes a full out-of-plane rotation. Thus, we propose a rotation-invariant TLD system(RI-TLD). we propose a simplified average orientation histogram and rotation matrix for a rotation inference algorithm. Experimental results with various tracking tests demonstrate the robustness and efficiency of the proposed system.

A Study on Accuracy Estimation of Service Model by Cross-validation and Pattern Matching

  • Cho, Seongsoo;Shrestha, Bhanu
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.17-21
    • /
    • 2017
  • In this paper, the service execution accuracy was compared by ontology based rule inference method and machine learning method, and the amount of data at the point when the service execution accuracy of the machine learning method becomes equal to the service execution accuracy of the rule inference was found. The rule inference, which measures service execution accuracy and service execution accuracy using accumulated data and pattern matching on service results. And then machine learning method measures service execution accuracy using cross validation data. After creating a confusion matrix and measuring the accuracy of each service execution, the inference algorithm can be selected from the results.

LMI-Based Synthesis of Robust Iterative Learning Controller with Current Feedback for Linear Uncertain Systems

  • Xu, Jianming;Sun, Mingxuan;Yu, Li
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.171-179
    • /
    • 2008
  • This paper addresses the synthesis of an iterative learning controller for a class of linear systems with norm-bounded parameter uncertainties. We take into account an iterative learning algorithm with current cycle feedback in order to achieve both robust convergence and robust stability. The synthesis problem of the developed iterative learning control (ILC) system is reformulated as the ${\gamma}$-suboptimal $H_{\infty}$ control problem via the linear fractional transformation (LFT). A sufficient convergence condition of the ILC system is presented in terms of linear matrix inequalities (LMIs). Furthermore, the ILC system with fast convergence rate is constructed using a convex optimization technique with LMI constraints. The simulation results demonstrate the effectiveness of the proposed method.

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

Accuracy Assessment of Forest Degradation Detection in Semantic Segmentation based Deep Learning Models with Time-series Satellite Imagery

  • Woo-Dam Sim;Jung-Soo Lee
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • This research aimed to assess the possibility of detecting forest degradation using time-series satellite imagery and three different deep learning-based change detection techniques. The dataset used for the deep learning models was composed of two sets, one based on surface reflectance (SR) spectral information from satellite imagery, combined with Texture Information (GLCM; Gray-Level Co-occurrence Matrix) and terrain information. The deep learning models employed for land cover change detection included image differencing using the Unet semantic segmentation model, multi-encoder Unet model, and multi-encoder Unet++ model. The study found that there was no significant difference in accuracy between the deep learning models for forest degradation detection. Both training and validation accuracies were approx-imately 89% and 92%, respectively. Among the three deep learning models, the multi-encoder Unet model showed the most efficient analysis time and comparable accuracy. Moreover, models that incorporated both texture and gradient information in addition to spectral information were found to have a higher classification accuracy compared to models that used only spectral information. Overall, the accuracy of forest degradation extraction was outstanding, achieving 98%.

Study on Course-Embedded Learning Achievement Evaluation and Adaptive Feedback (교과기반 학습성취 평가 및 적응형 피드백 시스템 설계)

  • Chung, Hyun-Sook;Kim, Jung-Min
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.553-560
    • /
    • 2022
  • The research of course-embedded learning evaluation method, which can be used to measure the competency of learners by evaluation of learning outcomes, has been performed for competency-based education in the university. In this paper, we propose an learning evaluation and adaptive feedback model based on learning outcomes, learning subjects, learning concepts graph, and an evaluation matrix. Firstly, we define the layered learning outcomes, a graph of learning subjects and concepts, and two association matric. Secondly, we define algorithms to calculate the level of learning achievement and the learning feedback to learners. We applied the proposed method to a specific course, "Java Programing", to validate the effectiveness of our method. The experimental results show that our proposed method can be useful to measure the learning achievement of learners and provide adaptive feedbacks to them.

Developing Individual Mastery Framework in an Embedded-Organization

  • Kim, Jae-Jon;Noh, Gui-Soon
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.446-453
    • /
    • 2008
  • All are organizations embedded, here in after, Em-organizaion that confronts the ever-growing complexity. It is important to know Em-organization through Individual Mastery. The complexity must be decreased, and clarified in order to derive to get our ontology from the influence of others. The opportunity to learn in practice is embedded in processes that the community developed. Driving strategic innovation is achieving breakthrough performance throughout the value chain. We used to express complex unit on matrix which includes only the federal statutes because the role of information technology should be a source of competitive advantages each other. Therefore, we got the idea that integrated both kinds of knowledge to create differentiation by ourselves. This practice is situated the learning of Strategic CoP in e-class seminar of our graduate school. We suggest theoretically two things. One is matrix-based decision. Another is creating new context through systems thinking.

  • PDF