• Title/Summary/Keyword: matrix inequality approach

Search Result 150, Processing Time 0.026 seconds

Data-based Control for Linear Time-invariant Discrete-time Systems

  • Park, U. S.;Ikeda, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1993-1998
    • /
    • 2004
  • This paper proposes a new framework for control system design, called the data-based control approach or data space approach, in which the input and output data of a dynamical system is directly and solely used to analyze or design a control system without the employment of any mathematical models like transfer functions, state space equations, and kernel representations. Since, in this approach, most of the analysis and design processes are carried out in the domain of the data space, we introduce some notions of geometrical objects, e.g., the openloop and closed-loop data spaces, which serve as the system representations in the data space. In addition, we establish a relationship between the open-loop and closed-loop data spaces that the closed-loop data space is contained in the open-loop data space as one of its subspaces. By using this relationship, we can derive the data-based stabilization condition for a linear time-invariant discrete-time system, which leads to a linear matrix inequality with a rank constraint.

  • PDF

A Study on the Robust Stability and Stabilization Problem for Marine Vessel (수상 및 수중 운동체의 강인 안정성 해석 및 안정화에 관한 연구)

  • Kim, Young-Bok;Cho, Kwang-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.379-385
    • /
    • 2012
  • In this paper, the stability and stabilization problems for marine vessels including surface and underwater vehicles are described. In the marine vessels, there are many and strong nonlinear parameters. These give hard design process and difficulties to us. In this article, at first we make a descriptor system representation as a controlled system to preserve the physical parameters of the system as it is. And we propose a new stability and stabilizability conditions based on the quadratic stabilization approach which gives a solution for the unreasonable problems produced by added mass. That is, the proposed conditions are not interfered with the nonsymmetric matrix constraint. And the stability condition is given by an matrix inequality such that it makes us to obtain a solution easily for something.

TS Fuzzy Classifier Using A Linear Matrix Inequality (선형 행렬 부등식을 이용한 TS 퍼지 분류기 설계)

  • Kim, Moon-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • his paper presents a novel design technique for the TS fuzzy classifier via linear matrix inequalities(LMI). To design the TS fuzzy classifier built by the TS fuzzy model, the consequent parameters are determined to maximize the classifier's performance. Differ from the conventional fuzzy classifier design techniques, convex optimization technique is used to resolve the determination problem. Consequent parameter identification problems are first reformulated to the convex optimization problem. The convex optimization problem is then efficiently solved by converting linear matrix inequality problems. The TS fuzzy classifier has the optimal consequent parameter via the proposed design procedure in sense of the minimum classification error. Simulations are given to evaluate the proposed fuzzy classifier; Iris data classification and Wisconsin Breast Cancer Database data classification. Finally, simulation results show the utility of the integrated linear matrix inequalities approach to design of the TS fuzzy classifier.

Dissipation Inequality of LTI System Based on Pencil Model

  • Shibasato, Koki;Shiotsuki, Tetsuo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.135-140
    • /
    • 1998
  • The concept of dissipativity and passivity are of interest to us from a theoretical as well as a practical point of view. It is well known that the Riccati equation is derived from the dissipation inequality which expresses the fact that the system is dissipative; the energy stored inside the system doesn't exceed the amount of supply which flows into the system. The pencil model is regarded as a representation based on behavioral approach introduced by J.C. Willems. It has first order in the internal variable and zeroth order in the external variable. In general, any matrix pencil is transformed into a canonical form which is consist of several kind of sub-pencils, One of them has row full rank for $^\forall S\;\in\;\mathds{C}\;\bigcup{\infty}$, we call it under-determined mode of the model. In our opinion, most important properties of dynamical system lay in the mode. According to the properties of canonical form for pencil, it is shown that the storage function which characterizes the dissipativity of the system can be written as a LMI for the under-determined mode, if the system doesn't include impulse mode.

  • PDF

Consensus of High-order Linear Systems with Directed Communication Topology Using LMI Approach (LMI 기법을 이용한 방향성 통신 토폴로지를 갖는 고차 선형시스템들의 상태일치)

  • Kim, Su-Bum;Choi, Hyoun-Chul;Lee, Sung-Hun;Kim, Kang-Seok;Joo, Seoung-Yul;Hong, Woo-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.941-947
    • /
    • 2011
  • This paper deals with the consensus problem for multi-agent linear dynamic systems with directed communication topology. All the agents are identical high-order linear systems and their state information is exchanged through a communication network with directed graph. It is shown that a consensus is achieved if there exists a feasible solution to a set of linear matrix inequalities obtained for a simultaneous stabilization problem for multiple systems. Examples are presented to show the effectiveness of the proposed method.

H∞ Control of T-S Fuzzy Systems Using a Fuzzy Basis- Function-Dependent Lyapunov Function (퍼지 기저함수에 종속적인 Lyapunov 함수를 이용한 T-S 퍼지 시스템의 H∞ 제어)

  • Choi, Hyoun-Chul;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.615-623
    • /
    • 2008
  • This paper proposes an $H_{\infty}$ controller design method for Takagi-Sugeno (T-S) fuzzy systems using a fuzzy basis-function-dependent Lyapunov function. Sufficient conditions for the guaranteed $H_{\infty}$ performance of the T-S fuzzy control system are given in terms of linear matrix inequalities (LMIs). These LMI conditions are further used for a convex optimization problem in which the $H_{\infty}-norm$ of the closed-loop system is to be minimized. To facilitate the basis-function-dependent Lyapunov function approach and thus improve the closed-loop system performance, additional decision variables are introduced in the optimization problem, which provide an additional degree-of-freedom and thus can enlarge the solution space of the problem. Numerical examples show the effectiveness of the proposed method.

Robust Stability of Uncertain Linear Large-scale Systems with Time-delay via LMI Approach (LMI 기법을 이용한 시간지연 대규모 불확정성 선형 시스템의 강인 안정성)

  • Lee, Hee-Song;Kim, Jin-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1287-1292
    • /
    • 1999
  • In large-scale systems, we frequently encounter the time-delay and the uncertainty, and these should be considered in the design of controller because these are the source of the degradation of the system performance and instability of system. In this paper, we consider the robust stability of the linear large scale systems with the uncertainties and the time-delays. The considered uncertainties are both structured uncertainty and the unstructured uncertainty. Also, the considered time-delays are time-varying having finite time derivative limits. Based on the Lyapunov theorem and the linear matrix inequality(LMI) technique, we present two sufficient conditions that guarantee the robust stability of the system. The conditions are expressed as the LMI forms which can be easily checked their feasibility by using the well-known LMI control toolbox. Finally, we show by two examples that our results are less conservative than the previous results.

  • PDF

Static Output Feedback Sliding Mode Control Design for Linear Systems with Mismatched Uncertainties (비정합 불확실성을 갖는 선형 시스템을 위한 정적 출력 궤환 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.15-18
    • /
    • 2007
  • We consider the problem of designing a static output feedback sliding mode control law for linear dynamical systems with mismatched uncertainties in the state matrix. We assume that an output dependent sliding surface guaranteeing the quadratic stability of the sliding mode dynamics is given, the reachability condition is not required to be satisfied globally, and the output feedback sliding mode control law complises both linear and discontinuous parts. We reduce the problem of designing the linear part of the sliding mode control law to a simple LMI problem which offers design flexibility for combining various useful convex design specifications. Our approach does not require state transformation and it can be applied to mismatched uncertain systems.

Design of Buoyancy and Moment Controllers of a Underwater Glider Based on a T-S Fuzzy Model (T-S 퍼지 모델 기반 수중글라이더의 부력 및 모멘트 제어기 설계)

  • Lee, Gyeoung Hak;Kim, Do Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2037-2045
    • /
    • 2016
  • This paper presents a fuzzy-model-based design approach to the buoyancy and moment controls of a class of nonlinear underwater glider. Through the linearization and the sector nonlinearity methodologies, the underwater glider dynamics is represented by a Takagi-Sugeno (T-S) fuzzy model. Sufficient conditions are derived to guarantee the asymptotic stability of the closed-loop system in the format of linear matrix inequality (LMI). Simulation results demonstrate the effectiveness of the proposed buoyancy and moment controllers for the underwater glider.

A Balanced Model Reduction for Uncertain Nonlinear Systems (불확실한 비선형 시스템의 균형화된 모델축소)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper deals with a balanced model reduction for uncertain nonlinear systems via T-S fuzzy approach. We define a generalized controllability/observability gramian and obtain a balanced state space model using generalized gramians which can be obtained from solutions of linear matrix inequalities. We present a balanced model reduction scheme by truncating not only state variables but also uncertain elements. An upper bound of the model reduction error will also be suggested. In order to demonstrate the efficacy of our method, a numerical example will be presented.