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Abstract: This paper proposes a new framework for control system design, called the data-based control approach or data space approach, in
which the input and output data of a dynamical system is directly and solely used to analyze or design a control system without the employment
of any mathematical models like transfer functions, state space equations, and kernel representations. Since, in this approach, most of the
analysis and design processes are carried out in the domain of the data space, we introduce some notions of geometrical objects, e.g., the open-
loop and closed-loop data spaces, which serve as the system representations in the data space. In addition, we establish a relationship between
the open-loop and closed-loop data spaces that the closed-loop data space is contained in the open-loop data space as one of its subspaces. By
using this relationship, we can derive the data-based stabilization condition for a linear time-invariant discrete-time system, which leads to a
linear matrix inequality with a rank constraint.
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1. Introduction
In the field of control theory, it is widely accepted that the model-

based control method, which employs the mathematical models
such as transfer functions, state space equations, and kernel rep-
resentations as a system representation, is the most effective and
reliable approach for control system analysis and synthesis. Partic-
ularly, in this approach, the mathematical models may be obtained
in two main different ways: either by the analytical formulation
from the first principles, or by the identification from the input and
output data.

From here, we briefly mention about the basic motivation of the
present study as follows: When only the input and output data is
available as reliable information about a dynamical system – which
is much more common case in practice – then it is not inevitable to
use the mathematical models for analysis and synthesis of control
systems. That is, it is possible that there exists another approach as
an alternative for the model-based control approach.

In particular, the authors are convinced that there exists a new
framework, in which we can analyze and design control systems
with the direct use of the input and output data without taking the
pains to identify the mathematical models from it. In this frame-
work, we also believe that it is possible to deal more directly with
the uncertainties in data, which is mainly caused by noise, compared
with the model-based control methods.

This viewpoint was first proposed by the second author and his
colleagues, and several preliminary results on the model-less algo-
rithm for tracking control based on input-output data have been in-
troduced in [1], [2]. In addition, the data-based stability conditions
for open-loop and closed-loop systems, respectively, have been pro-
posed by the authors in [3], which enable us to check the inter-
nal stability of a linear time-invariant discrete-time system directly
from its behavior, namely, the input and output data.

In the present paper, we propose a new framework for feedback
control design based on the input and output data, which is called
the data-based control approach or data space approach. In addi-
tion, we establish the data-based stabilization condition for a linear
time-invariant discrete-time system.

In this approach, we deal extensively with the geometrical objects

such as the open-loop and closed-loop data spaces, to which all the
open-loop and closed-loop behaviors of the system respectively be-
long. Hence, in Section 2, we introduce the notions of these two
data spaces, which serve as the system representations in the data
space. In addition, in the data space approach, a feedback control
can be realized by imposing an additional constraint on the open-
loop data space, which results in a closed-loop data space. Hence,
we also introduce the notion of the feedback data space which will
act as the additional constraint. From these notions of data spaces,
we can establish a relationship between the open-loop and closed-
loop data spaces that the closed-loop data space is contained in the
open-loop data space as one of its subspaces.

By using this relationship between the open-loop and closed-loop
data spaces and the data-based stability condition for closed-loop
systems proposed in [3], we can derive the data-based stabilization
condition, which leads to a linear matrix inequality (LMI) with a
rank constraint. However, the rank constraint makes the data-based
stabilization problem non-convex and NP-hard. In this paper, an
approximation algorithm by using the LMI relaxation and lineariza-
tion method [6], [7] is applied to solve the data-based stabilization
problem. In simulations, the feasibility of the proposed data-based
stabilization condition is demonstrated through two simple numeri-
cal examples.

Throughout the paper, all the discussions are made upon the fol-
lowing assumptions:

• The plant under consideration is a finite-dimensional linear
time-invariant system, and its order and relative degree are
known a priori.

• The input and output data is properly sampled and noise-free.

2. Data Spaces
In this section, we introduce the notions of the geometrical ob-

jects such as the open-loop, closed-loop, and feedback data spaces,
which serve as the representations of the system and controller in
the data space approach.
2.1. Open-loop data space

Let us consider a linear time-invariant discrete-time system with
single input and single output as the plant and describe its dynamics
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by using an input and output difference equation as

y(k +n)+an−1y(k +n−1)+ · · ·+a1y(k +1)+a0y(k)

= bmu(k +m)+ · · ·+b1u(k +1)+b0u(k), k ∈ N,
(1)

where u(k) ∈ R and y(k) ∈ R denote the input and output data at
the time instant k, respectively. In addition, the order of the system
and its relative degree are given as n and n−m (n > m) respectively,
thus a0 and b0 are not zero at the same time and bm is nonzero as
well.

In the model-based control approach, the dynamics of the system
(1) is modeled in terms of a parameter vector θ T ∈ R

n+m+2 as

θ = (1,an−1, · · · ,a1,a0,−bm, · · · ,−b1,−b0), (2)

which can be identified as a point in the parameter space of R
n+m+2.

On the other hand, in the data-based control approach, we are
concerned only with the input and output data of (1), not with the
parameter vector θ as in (2). From this viewpoint, we introduce a
set of data vectors d(k) ∈ R

n+m+2, each of which consists of both
(n + 1) consecutive output data and (m + 1) consecutive input data
of (1), defined as

d(k) = (y(k +n), · · · ,y(k), u(k +m), · · · ,u(k))T , k ∈ N. (3)

Here, let D denote the data space of R
n+m+2. Then, due to the

constraint in (1), the degrees of freedom of the data vectors d(k)
are reduced by 1, hence the set of data vectors d(k) in (3) repre-
sent a certain subspace, i.e., (n+m+1)-dimensional hyperplane, in
the data space D. Therefore, as a representation of the system (1),
we can define a subspace of D, which is called the open-loop data
space, as follows:

Do � {d(k) ∈ D | d(k) ∈ θ⊥ ∀u(k), k ∈ N}, (4)

where dimDo = n+m+1.
In addition, let us consider a set of data matrix Ψo ∈

R
(n+m+2)×(n+m+1) whose column vectors consist of (n+m+1) con-

secutive data vectors of (3) as follows:

Ψo(k) �
[
d(k) d(k +1) · · · d(k +n+m)

]
, k ∈ N. (5)

If it holds that spanΨo(k) = Do for some instant k, then we call the
data matrix Ψo(k) as a basis matrix of the open-loop data space Do

and denote it as Ψo.
2.2. Feedback data space

For the stabilization of the system (1), we consider a feedback
control in which all the available input and output data in (1) are fed
back to generate the control input. However, in this approach, we
view the feedback control as an operation that imposes an additional
constraint on the original open-loop data space, which results in a
closed-loop data space.

Therefore, from this consideration, one of such feedback control
can be realized by constructing a linear time-invariant dynamic con-
troller given as

u(k +m)+dm−1u(k +m−1)+· · ·+d1u(k +1)+d0u(k)

= cn−1y(k +n−1)+ · · ·+ c1y(k +1)+ c0y(k), k ∈ N,
(6)

where m and m− n(m < n) are given as the order of the controller
and its relative degree respectively.

Note that the controller in (6) is not proper, which essentially
means that the output data y(k + m), · · · ,y(k+n−1) in (6) are not
yet available from the measurements when we attempt to feedback
them to determine the control input u(k+m) at each instant k. How-
ever, since these output data are already determined by the system
dynamics and the inputs given prior to the (k + m) step, it is possi-
ble to predict them from the past input and output data, although the
details of which are not given in the present paper. As a result, the
controller in (6) is causal and hence can be realized by feeding back
both the measured and predicted output data with the past input data
to calculate the control input data u(k +m), k ∈ N.

From (6), we can also define a subspace of D, which is called the
feedback data space, as

D f � {d(k) ∈ D | d(k) ∈ θ⊥
c , k ∈ N}, (7)

where dimD f = n+m+1 and

θc = (0,−cn−1, · · · ,−c1,−c0,1,dm−1, · · · ,d1,d0). (8)

Here, the parameter vector θ T
c ∈ R

n+m+2 in (8) itself represents
the feedback gain. To find this feedback gain is the ultimate goal
of the data-based control approach, similarly with the model-based
control approach.
2.3. Closed-loop data space

In the data space approach, the geometrical interconnection of
two data spaces, i.e., the open-loop and feedback data space, yields
the dynamics of closed-loop systems.

As in the case of the open-loop data space, let us consider a set
of data vectors d̂(k) ∈ D, each of which consists of the closed-loop
input and output data, defined as

d̂(k) = ( ŷ(k +n), · · · , ŷ(k), û(k +m), · · · , û(k))T , k ∈ N, (9)

where û(k) and ŷ(k) denote the closed-loop input and output data
that satisfy (1) and (6) simultaneously.

Then, it can be easily seen that all the closed-loop data vectors
d̂(k) in (9) belong to a certain subspace of D that is the intersection
of the open-loop data space Do and feedback data space D f . Hence,
we refer to this subspace as the closed-loop data space and define it
as follows:

Dc � {d̂(k) ∈ D | d̂(k) ∈ θ⊥ and d̂(k) ∈ θ⊥
c , k ∈ N}, (10)

where dimDc = n+m.
In addition, we also consider a closed-loop data matrix Ψc ∈

R
(n+m+2)×(n+m) whose column vectors consist of (n + m) consec-

utive closed-loop data vectors of (9) as follows:

Ψc(k) �
[
d̂(k) d̂(k +1) · · · d̂(k+n+m−1)

]
, k ∈ N. (11)

For some instant k, if we have the data matrix Ψc(k) such that
spanΨc(k) = Dc, then we call it a basis matrix of Dc and denote it
as Ψc.

3. Feedback in Data Space
In this section, we investigate the geometrical meaning of a re-

lationship that exists between the open-loop and closed-loop data
spaces. This relationship is established by a feedback operation in
the data space, by which all the behaviors in the open-loop data
space are converted into those in the closed-loop data space.
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ŷ(k +2)
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û(k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� E xc(k +1) = Ac xc(k), k ∈ N, E,Ac ∈ R
(n+m+1)×(n+m+1). (14)

First, it can be easily seen that the definition of the closed-loop
data space Dc in (10) itself reveals the fact that the closed-loop data
space Dc is always contained in the open-loop data space Do as one
of its subspaces as

Dc ⊂ Do, (12)

which is clear from Dc = Do ∩D f .

From this, we have the following result that specifies the relation-
ship between the open-loop and closed-loop data spaces:

Theorem 1. Let a basis matrix Ψo of Do and a basis matrix
Ψc of Dc be given, then there exists a coefficient matrix Z ∈

R
(n+m+1)×(n+m) with the full column rank such that

Ψc = Ψo Z. (13)

Proof: It is trivial from (12).

Remark 1. The relationship in (13) can be interpreted that the ba-
sis of the closed-loop data space Dc is made up of a subset of the
basis of the open-loop data space Do, which is selected by the co-
efficient matrix Z. In addition, the relationship in (13) will be used
in deriving the data-based stabilization condition in Section 5..

4. Data-based Stability Condition
for Closed-loop Systems

In this section, we introduce the data-based stability condition
for closed-loop systems, which is originally intended to be used as
a stabilization condition in the data-based control approach.

From (1) and (6), we can construct the entire closed-loop system
in a descriptor representation as seen in (14), where the vector xc ∈

R
n+m+1 corresponds to both n consecutive closed-loop output data

and (m + 1) consecutive closed-loop input data. In particular, the
entire modes of (14) consist of the n-th order dynamic modes of the
plant (1), the m-th order dynamic modes of the controller (6), and
the static constraint of a feedback coupling. In addition, it can be
easily seen that the system (14) is regular and causal from [4]

det(zE −Ac) = zn+m+(an−1+dm−1−bmcn−1)zn+m−1

+ · · ·+(a0 d0 −b0 c0) �≡ 0,

deg(det(zE −Ac)) = rankE.

(15)

Here, we also define the data matrix Φc ∈ R
(n+m+1)×(n+m) which

consists of (n+m) consecutive vectors xc as follows:

Φc(k)=
[
xc(k) xc(k+1) · · · xc(k+n+m−1)

]
, k ∈ N, (16)

by which we have another representation of (14) as

E Φc(k +1) = Ac Φc(k), k ∈ N. (17)

From these settings, let us introduce the data-based stability con-
dition for closed-loop systems as follows:

Theorem 2. When the system (14) is regular and causal, the fol-
lowing statements are equivalent.

1) The system (14) has an asymptotically stable equilibrium point.

2) ∃P = PT > 0 s.t.

xT
c (k +1)(ET PE)xc(k +1)− xT

c (k)(ET PE)xc(k) < 0

∀xc(k) �= 0, k ∈N s.t. E xc(k) �= 0 and E xc(k+1) = Ac xc(k).

3) ∃P = PT > 0 ∃k0 s.t.

ΨT
c (k0)

[
E 0

0 E

]T [
P 0
0 −P

][
E 0

0 E

]
Ψc(k0) < 0

for Ψc(k0) s.t. rank Ψc(k0) = n+m.

Proof: The proof is given in Appendix A.

Remark 2. In Theorem 2, the condition 3) represents itself the
data-based stability condition for closed-loop systems, in which no
information relating to the system matrix Ac is employed except the
data matrix Ψc(k0) of rank (n + m). Note also that the matrix E is
only related to and uniquely determined by the order and relative
degree of the system and controller.

However, for a closed-loop system, if the initial conditions and
feedback gains of the controller are not given in advance, we can
not generate the closed-loop input and output data as seen in Ψc(k0).
This means that the data matrix Ψc(k0) in the condition 3) of The-
orem 2 describes the variable matrix that has to be decided. There-
fore, when the data-based stability condition in Theorem 2 is asso-
ciated with some open-loop input and output data, it can be refor-
mulated as a data-based stabilization condition, and the details will
be discussed in the next section.

5. Data-based Stabilization
In this section, by using the relationship between the open-loop

and closed-loop data spaces in Theorem 1 and the data-based sta-
bility condition for closed-loop systems as seen in the condition 3)
of Theorem 2, we derive the data-based stabilization condition for
a linear time-invariant discrete-time system. In addition, we will
show how the feedback gain can be determined from the solution of
the data-based stabilization problem.
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5.1. Data-based stabilization condition
By simply substituting Ψc(k0) in the condition 3) of Theorem 2

with Ψo Z as seen in (13), we obtain the data-based stabilization
condition as follows:

Find P, Z s.t.

•P = PT > 0 (18)

•ZT ΨT
o

[
E 0

0 E

]T [
P 0
0 −P

][
E 0

0 E

]
Ψo Z < 0, (19)

where (19) describes a nonlinear matrix inequality. Unfortunately, it
seems to be extremely difficult to obtain a solution of the data-based
stabilization problem in (18) and (19) since the nonlinear matrix
inequality in (19) makes the problem non-convex and NP-hard.

From now on, we convert the original data-based stabilization
condition in (18) and (19) into a computationally more tractable
form. First, by Finsler’s theorem [5], the following equivalent con-
dition can be easily obtained:

Find P, µ, W s.t.

•P = PT > 0, µ > 0 (20)

•ΨT
o

[
E 0

0 E

]T [
P 0
0 −P

][
E 0

0 E

]
Ψo < µ(W TW ), (21)

where µ ∈ R, and W T ∈ R
n+m+1 denotes a basis for the nullspace

of Z as

W Z = 0. (22)

From (21), since both µ and W represent the variable matrices, by
adopting Q ∈ R

(n+m+1)×(n+m+1) as a new variable matrix as

Q = µ(W TW ) ≥ 0, (23)

we can derive an equivalent data-based stabilization condition as
follows:

Definition 1 (Data-based Stabilization Problem). For a given ba-
sis matrix Ψo of the open-loop data space Do, find a Lyapunov ma-
trix P and a matrix Q such that

• P = PT > 0, Q = QT ≥ 0 (24)

• rankQ = 1 (25)

• ΨT
o

[
E 0

0 E

]T [
P 0
0 −P

][
E 0

0 E

]
Ψo < Q. (26)

Remark 3. The data-based stabilization problem in Definition 1 is
formulated in the form of a linear matrix inequality(LMI) with a
rank constraint. However, the rank constraint in (25) still makes the
entire data-based stabilization problem non-convex and NP-hard.

5.2. Feedback gains
In this subsection, we briefly examine how to determine the feed-

back gain from the solution of the data-based stabilization problem
in Definition 1.

First, let us suppose that the matrix Q is obtained, then, from (22)
and (23), the coefficient matrix Z can be readily determined as a
basis of the nullspace of Q as

Z ∈ kerW = kerQ. (27)

Next, by using Z obtained from (27), the feedback gain K ∈R
n+m+1

is similarly determined as a basis of the nullspace of the data matrix
ΨT

c (:,2 : n+m+2) as

K ∈ kerΨT
c (:,2 : n+m+2) = ker(ZT ΨT

o (:,2 : n+m+2)), (28)

where ΨT
c (:,2 : n+m+2) denotes the submatrix of ΨT

c whose
columns consist of the 2nd to (n + m + 2)-th column vectors of
ΨT

c and similarly for ΨT
o (:,2 : n+m+2). Note that the feed-

back gain K obtained from (28) is identical to the parameter vector
θ T

c (2 : n+m+2) which specifies the feedback data space D f .

6. Computational Algorithm
In this section, we present a computational algorithm to solve the

data-based stabilization problem in Definition 1 by using the LMI
relaxation and linearization method [6], [7].

First, let us consider a factorization of the matrix Q as follows:

Q=

[
Q11 Q12

QT
12 q22

]

=

[
In+m Q12q−1

22
0 I1

][
Q11−Q12(q−1

22 )QT
12 0

0 q22

][
In+m 0

q−1
22 QT

12 I1

] (29)

where q22 ∈ R is a positive scalar. To satisfy the rank constraint in
(25), the following condition has to be achieved:

Q11 −Q12(q−1
22 )QT

12 = 0 (30)

Hence, to achieve (30), we consider the minimization of the trace
of (q22Q11 −Q12QT

12) as

min
Q11,Q12,q22

Tr(q22Q11 −Q12QT
12). (31)

However, since the objective function to minimize in (31) includes
nonlinear terms, we employ a linear approximation of (q22Q11 −

Q12QT
12) for given Q̂11, Q̂12, q̂22 as follows:

min
Q11,Q12,q22

Tr{q̂22Q11 +q22Q̂11 + q̂22Q̂11

− (Q̂12QT
12 +Q12Q̂T

12 + Q̂12Q̂T
12)}.

(32)

First, we start the computations by solving the LMI relaxed ver-
sion of the data-based stabilization problem in Definition 1 from
which the rank constraint in (25) is removed. Then, by using the
solution Q of the LMI relaxed problem as an initial point, we it-
eratively solve the minimization problem in (32) with satisfying
(24) and (26) until (25) is achieved. Concurrently, we also replace
Q̂11, Q̂12, q̂22 with the new solution Q at each step. Here, a rough
outline of the above algorithm is presented as follows:

Step 1: Find P, Q s.t. (24) and (26).
Set Q11 = Q̂11, Q12 = Q̂12, q22 = q̂22.

Step 2: Solve (32) s.t. (24) and (26).
Set Q11 = Q̂11, Q12 = Q̂12, q22 = q̂22.

Step 3: Check the stopping criterion; if it is satisfied, stop;
otherwise go back to Step 2.

Remark 4. Note that the computational algorithm presented in this
section does not guarantee the convergence to the global solution.
In addition, there seems to be a strong dependence on the initial
conditions in this algorithm.
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7. Numerical Examples
In this section, we provide two numerical examples to demon-

strate that we can design a stabilizing controller by using the pro-
posed data-based stabilization condition as seen in Definition 1.

First, let us consider an example system (Σ1) with n = 3 and
m = 1 and with initial conditions given as follows:

Σ1 : y(k +3)+0.8y(k +2)+0.86y(k +1)−1.02y(k)

= 1.5u(k +1)−1.2u(k), k ∈ N

y(1)=1, y(2)=−1, y(3)=2, u(1)=1,

whose dynamics is unstable as seen from its eigenvalues λ (Σ1) as

λ (Σ1) = { −0.7±1.1 i 0.6 }

In simulations, from the time instant k = 1 to k = 20, we first
generate the open-loop input and output data by exciting the sys-
tem Σ1 with a random input sequence that has the values in the
range between [−1,1]. Then, from the sets of the open-loop in-
put and output data, we can obtain the data matrix Ψo(k) such that
rankΨo(k) = n+m+1 = 5. For this basis matrix Ψo = Ψo(k), we
solve the data-based stabilization problem in Definition 1 by using
the computational algorithm presented in Section 6.. From the solu-
tion Q, as seen in (27) and (28), the feedback gain K1 is obtained as
follows:

K1 =

⎛
⎜⎜⎜⎜⎜⎝

−0.50482913308313
0.29542311898217
0.20543708125289
1.00000000000000

−0.12503461095847

⎞
⎟⎟⎟⎟⎟⎠ ,

which is normalized with respect to the fourth element. As a con-
sequence, the control input sequence u(k +m), k ∈ N can be calcu-
lated by using the feedback gain K1 as seen in (6) and (8). There-
fore, from the time instant k = 21, by applying this control input
sequence to the system Σ1, we obtain the closed-loop input and out-
put data, as depicted in Fig. 1.
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Fig. 1. Input and output response of Σ1

Next, we consider an another example system (Σ2) with n = 4
and m = 2 and with initial conditions given as follows:

Σ2 : y(k +4)+1.3y(k +3)−0.7y(k +2)−1.3y(k +1)+0.4y(k)

= u(k +2)+0.5u(k +1)+1.2u(k), k ∈ N

y(1)=1, y(2)=−1, y(3)=2, y(4)=−2, u(1)=1, u(2)=1.5.

Also, the system Σ2 has unstable dynamics as seen from its eigen-
values λ (Σ2) as

λ (Σ2) = { −1.1990±0.5102 i 0.8059 0.2922 }

Similarly, the feedback gain K2 is also obtained as

K2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.43602624518044
0.56363841077372
0.86490839871053

−0.31330947311240
1.00000000000000
0.26982886413856
0.93312798440503

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the closed-loop input and output data is depicted in Fig. 2.
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Fig. 2. Input and output response of Σ2

These two simulations results show that all stabilizing controllers
are obtained by using the data-based stabilization condition in Def-
inition 1.

8. Conclusions
In this paper, we proposed the data-based control approach (or

data space approach) as a new framework for feedback control de-
sign. In this approach, the notions of the open-loop and closed-loop
data spaces are introduced to serve as the system representations
in the data space, instead of employing the mathematical models.
In addition, the relationship between these two data spaces that the
closed-loop data space is contained in the open-loop data space as
one of its subspace was established. In the end, by applying this
relationship into the data-based stability condition for closed-loop
systems, we derived the data-based stabilization condition for a lin-
ear time-invariant discrete-time system, which leads to a linear ma-
trix inequality with a rank constraint.
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Appendix
A. Proof of Theorem 2

1)⇒2): First, since the system (E, Ac) in (14) is regular and
causal, it follows that there exist nonsingular matrices S, T ∈

R
(n+m+1)×(n+m+1) such that

SET =

[
In+m 0

0 0

]
, SAcT =

[
A1 0
0 I1

]
, (33)

where In+m, A1 ∈ R
(n+m)×(n+m) and I1 ∈ R.

Suppose that the system (14) has an asymptotically stable equi-
librium point, then there exists a positive definite symmetric matrix
P1 ∈ R

(n+m)×(n+m) such that

AT
1 P1A1 −P1 < 0. (34)

For some P1 that satisfies (34), there exists a positive scalar p2 ∈ R

such that

xT
1 (AT

1 P1A1 −P1)x1 + xT
2 p2x2 < 0, ∀x1 �= 0, x2 = 0. (35)

Then, (35) can be rewritten as(
xT

1 xT
2

)[
AT

1 0
0 I1

][
P1 0
0 p2

][
A1 0
0 I1

](
x1

x2

)
−

(
xT

1 xT
2

)[
In+m 0

0 0

][
P1 0
0 p2

][
In+m 0

0 0

](
x1

x2

)
< 0

∀

(
x1

x2

)
�= 0 s.t.

[
In+m 0

0 0

](
x1

x2

)
�= 0 and x2 = 0.

(36)

Also, we have the following equivalent condition to (36):(
xT

1 (k+1) xT
2 (k+1)

)[
In+m 0

0 0

][
P1 0
0 p2

][
In+m 0

0 0

](
x1(k+1)
x2(k+1)

)

−

(
xT

1 (k) xT
2 (k)

)[
In+m 0

0 0

][
P1 0
0 p2

][
In+m 0

0 0

](
x1(k)
x2(k)

)
< 0

∀

(
x1(k)
x2(k)

)
�= 0, k ∈ N s.t.

[
In+m 0

0 0

](
x1(k)
x2(k)

)
�= 0

and

[
In+m 0

0 0

](
x1(k +1)
x2(k +1)

)
=

[
A1 0
0 I1

](
x1(k)
x2(k)

)
.

(37)

From this, if we define a positive definite symmetric matrix P ∈

R
(n+m+1)×(n+m+1) and a vector xc ∈ R

(n+m+1) as

P = ST

[
P1 0
0 p2

]
S, xc(k) = T

(
x1(k)
x2(k)

)
, (38)

then, from (33) and (37), we can readily obtain the condition 2).
2)⇒1): For a positive definite symmetric matrix P, let us consider

a Lyapunov function V as

V (xc) = xT
c (ET PE)xc > 0 ∀xc �= 0 s.t. E xc �= 0. (39)

As seen in the condition 2), since the difference of V with respect to
k along any trajectory of the system (14) is negative definite (∇V <

0), the system has an asymptotically stable equilibrium point.
2)⇔3): First, the condition 2) can be rewritten as follows:

∃P = PT > 0 s.t.(
xT

c (k+1) xT
c (k)

)[
ET PE 0

0 −ET PE

](
xc(k+1)

xc(k)

)
<0

∀

(
xc(k+1)

xc(k)

)
�=0, k ∈ N s.t.[

E 0
0 E

](
xc(k+1)

xc(k)

)
�=0 and

[
E −Ac

](
xc(k+1)

xc(k)

)
=0.

(40)

In (40), the constraints on the vector

(
xc(k+1)

xc(k)

)
specify a certain

data space that is described as

Ω=
{(

xc(k+1)
xc(k)

)
∈R

2(n+m+1)
∣∣∣∣
(

xc(k+1)
xc(k)

)
∈
[
E −Ac

]⊥
\

[
E 0
0 E

]⊥}
,

where dimΩ = rankE = n+m.
From (17), it is easily seen that the data matrices Φc(k + 1) and

Φc(k) construct a subspace of
[
E −Ac

]⊥
. Also, it is obvious from

(1) and (6) that there are no such input and output data sets that lie
in the nullspace of E, which means that the input and output data
describe only the dynamic behavior of the system (14). Hence, we
have EΦc(k+1) �= 0 and EΦc(k) �= 0. Now, for some k0, if we
obtain the data matrix Φc(k0) of full column rank that satisfies the
rank condition as

rank

[
Φc(k0 +1)

Φc(k0)

]
= n+m, (41)

then, the data matrices in (41) becomes a basis matrix of the sub-

space Ω. From this, it follows that all the vectors

(
xc(k+1)

xc(k)

)
in

(40) can be expressed as a linear combination of the column vectors
of the basis matrix in (41), hence we have the following equivalent
condition to (40):

∃P = PT > 0 ∃k0 s.t.[
ΦT

c (k0+1) ΦT
c (k0)

][
ET PE 0

0 −ET PE

][
Φc(k0+1)

Φc(k0)

]
< 0,

(42)

for the data matrix Φc(k0) of rank (n+m).
Furthermore, the following relation holds for the data matrix

Ψc(k0) of rank (n+m):[
E 0
0 E

][
Φc(k0+1)

Φc(k0)

]
=

[
E 0

0 E

]
Ψc(k0), (43)

where [
E 0

0 E

]
∈ R

2(n+m+1)×(n+m+2). (44)

Thus, by substituting (43) into (42), we can finally obtain the con-
dition 3). The converse is also true, hence this completes 2)⇔ 3).
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