• 제목/요약/키워드: matrices

Search Result 2,662, Processing Time 0.032 seconds

SPECTRAL PROPERTIES OF BIPARTITE TOURNAMENT MATRICES

  • Koh, Young-Mee;Ree, Sang-Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.183-190
    • /
    • 2001
  • In this paper, we look at the spectral bounds of a bipartite tournament matrix M with arbitrary team size. Also we find the condition for the variance of the Perron vector of M to vanish.

  • PDF

ON SOME MATRIX INEQUALITIES

  • Lee, Hyun Deok
    • Korean Journal of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.565-571
    • /
    • 2008
  • In this paper we present some trace inequalities for positive definite matrices in statistical mechanics. In order to prove the method of the uniform bound on the generating functional for the semi-classical model, we use some trace inequalities and matrix norms and properties of trace for positive definite matrices.

  • PDF

ON SIMILARITY INVARIANTS OF EP MATRICES

  • Rajian, C.;Chelvam, T. Tamizh
    • East Asian mathematical journal
    • /
    • v.23 no.2
    • /
    • pp.207-212
    • /
    • 2007
  • We describe the class of invertible matrices T such that $TAT^{-1}$ is EPr, for a given EPr matrix A of order n. Necessary and sufficient condition is determined for $TAT^{-1}$ to be EP for an arbitrary matrix A of order n.

  • PDF

GENERALIZED ALTERNATING SIGN MATRICES AND SIGNED PERMUTATION MATRICES

  • Brualdi, Richard A.;Kim, Hwa Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.921-948
    • /
    • 2021
  • We continue the investigations in [6] extending the Bruhat order on n × n alternating sign matrices to our more general setting. We show that the resulting partially ordered set is a graded lattice with a well-define rank function. Many illustrative examples are given.

Low Density Codes Construction using Jacket Matrices (잰킷 행렬을 이용한 저밀도 부호의 구성)

  • Moon Myung-Ryong;Jia Hou;Hwang Gi-Yean;Lee Moon-Ho;Lee Kwang-Jae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.8 s.338
    • /
    • pp.1-10
    • /
    • 2005
  • In this paper, the explicit low density codes construction from the generalized permutation matrices related to algebra theory is investigated, and we design several Jacket inverse block matrices on the recursive formula and permutation matrices. The results show that the proposed scheme is a simple and fast way to obtain the low density codes, and we also Proved that the structured low density parity check (LDPC) codes, such as the $\pi-rotation$ LDPC codes are the low density Jacket inverse block matrices too.

Equivalence of Hadamard Matrices Whose Rows Form a Vector Space (행백터 집합이 벡터공간을 이루는 하다마드 행렬의 동치관계)

  • Jin, Seok-Yong;Kim, Jeong-Heon;Park, Ki-Hyeon;Song, Hong-Yeop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7C
    • /
    • pp.635-639
    • /
    • 2009
  • In this paper, we show that any two Hadamard matrices of the same size are equivalent if they have the property that the rows of each Hadamard matrix are closed under binary vector addition. One of direct consequences of this result is that the equivalence between cyclic Hadamard matrices constructed by maximal length sequences and Walsh-Hadamard matrix of the same size generated by Kronecker product can be established.

Analysis of Linear Time-invariant System by Using a New Block Pulse Operational Matrices (새로운 일반형 블럭 펄스 적분 연산 행렬을 이용한 선형 시불변 시스템 해석)

  • Lee, Hae-Ki;Kim, Tai-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.175-182
    • /
    • 2004
  • This paper presents a new method for finding the Block Pulse series coefficients, deriving the Block Pulse integration operational matrices and generalizing the integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of state estimation or parameter identification more efficiently, it is necessary to find the more exact value of the Block Pulse series coefficients and integral operational matrices. This paper presents the method for improving the accuracy of the Block Pulse series coefficients and derives generalized integration operational matrix and applied the matrix to the analysis of linear time-invariant system.