SPECTRAL PROPERTIES OF BIPARTITE TOURNAMENT MATRICES

YOUNGMEE KOH AND SANGWOOK REE

ABSTRACT. In this paper, we look at the spectral bounds of a bipartite tournament matrix M with arbitrary team size. Also we find the condition for the variance of the Perron vector of M to vanish.

1. Introduction

Let p and q be positive integers. A digraph obtained by orienting each edge of the complete bipartite graph $K_{p,q}$ is called a bipartite tournament with team size p and q, and the associated adjacency (0,1)-matrix is called a bipartite tournament matrix. It is interpreted as the result of a round-robin competition between two teams in which each player in a team competes every player in the other team.

We assume that two teams respectively consist of players in the sets $\{1,2,\ldots,p\}$ and $\{p+1,p+2,\ldots,p+q\}$. Let p+q=n. Then a bipartite tournament matrix of order n with team size p and q is written $M=\begin{bmatrix}O_p&A\\B&O_q\end{bmatrix}$, where O_p is the zero matrix of order p, A is a $p\times q$ (0,1)-matrix, and $B=J_{q,p}-A^t$, where $J_{q,p}$ is the $q\times p$ matrix with 1's for all entries. The matrix M satisfies

$$(1) \hspace{1cm} M+M^t=J_n-\begin{bmatrix}J_p & O_{p,q}\\O_{q,p} & J_q\end{bmatrix}=\begin{bmatrix}O_p & J_{p,q}\\J_{q,p} & O_q\end{bmatrix},$$

where $O_{p,q}$ is the $p \times q$ zero matrix and $J_n = J_{n,n}$.

A matrix M is called reducible if $PMP^t = \begin{bmatrix} M_1 & O \\ * & M_2 \end{bmatrix}$ for some permutation matrix P, where M_1 and M_2 are nonvacuous square matrices, and irreducible otherwise. If a bipartite tournament matrix M is reducible,

Received July 16, 1999.

²⁰⁰⁰ Mathematics Subject Classification: 05C50, 15A18, 15A36.

Key words and phrases: tournaments, tournament matrices, bipartite tournament matrices.

then the submatrices M_1 and M_2 of PMP^t are again bipartite tournament matrices. To study the spectral properties of M, it is enough to look at its irreducible components.

It is well known by Perron-Frobenius theorem [1] that a nonnegative irreducible matrix M has its spectral radius ρ as a positive eigenvalue, called the *Perron value*, and a corresponding eigenvector consists of all positive coordinates, and the eigenvector the sum of whose coordinates is 1 is called the *Perron vector* of M.

We find the spectral bounds of an irreducible bipartite tournament matrix M with arbitrary team size p and q. Especially, when M is normal, M has two nonzero real eigenvalues $\pm \sqrt{pq}/2$, and the variance of the Perron vector of M vanishes if and only if $M1 = \frac{n}{4}1$, where n = p + q.

2. Spectral Properties

Let M be a bipartite tournament matrix with team size $p \leq q$, p+q=n and let λ be an eigenvalue of M and v an eigenvector such that $Mv=\lambda v$.

Pre- and post-multiplying v to equality (1) and applying Schwartz inequality, we obtain

(2)

$$(2\operatorname{Re}\lambda)v^{*}v = v^{*}(M+M^{t})v$$

$$= v^{*}J_{n}v - [\bar{v}_{1}, \dots, \bar{v}_{n}] \begin{bmatrix} J_{p} & O_{p,q} \\ O_{q,p} & J_{q} \end{bmatrix} \begin{bmatrix} v_{1} \\ \vdots \\ v_{n} \end{bmatrix}$$

$$= |v^{*}1|^{2} - \sum_{i=1}^{p} \bar{v}_{i} \cdot \sum_{i=1}^{p} v_{i} - \sum_{i=p+1}^{n} \bar{v}_{i} \cdot \sum_{i=p+1}^{n} v_{i}$$

$$\geq |v^{*}1|^{2} - p(|v_{1}|^{2} + \dots + |v_{p}|^{2}) - q(|v_{p+1}|^{2} + \dots + |v_{n}|^{2})$$

$$\geq |v^{*}1|^{2} - qv^{*}v,$$

where $1 = (1, ..., 1)^t$.

The variance of a vector $v = (v_1, \ldots, v_n)^t$ is defined by

$$\operatorname{var} v = \sum_{1 \le i < j \le n} |v_i - v_j|^2.$$

Let M be an irreducible bipartite tournament matrix with team size $p \leq q$, p+q=n, ρ the Perron value of the matrix, and $v=(v_1,\ldots,v_n)^t$

the corresponding eigenvector. Denote

$$v^{(1)} = (v_1, \dots, v_p)^t, \quad v^{(2)} = (v_{p+1}, \dots, v_n)^t$$

 $w = (w_1, w_2)^t, \quad w_1 = \sum_{i=1}^p v_i, \quad w_2 = \sum_{i=p+1}^n v_i.$

Pre- and post-multiplying v to equality (1), we have

$$v^*(M+M^t)v = [\bar{v}_1, \dots, \bar{v}_n] \begin{bmatrix} O_p & J_{p,q} \\ J_{q,p} & O_q \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

= $w^*w - |w_1 - w_2|^2$.

Since

$$\begin{split} w^*w &= |v_1 + \dots + v_p|^2 + |v_{p+1} + \dots + v_n|^2 \\ &= p(|v_1|^2 + \dots + |v_p|^2) - \sum_{1 \le i < j \le p} |v_i - v_j|^2 \\ &+ q(|v_{p+1}|^2 + \dots + |v_n|^2) - \sum_{p+1 \le i < j \le n} |v_i - v_j|^2 \\ &= p \, v^{(1)*} v^{(1)} + q \, v^{(2)*} v^{(2)} - \text{var} \, v^{(1)} - \text{var} \, v^{(2)}, \end{split}$$

we have

$$2\rho \, v^* v = p \, v^{(1)*} v^{(1)} + q \, v^{(2)*} v^{(2)} - \operatorname{var} v^{(1)} - \operatorname{var} v^{(2)} - \operatorname{var} w$$

or

(3)
$$0 \le \operatorname{var} v^{(1)} + \operatorname{var} v^{(2)} + \operatorname{var} w$$
$$= (p - 2\rho) v^{(1)*} v^{(1)} + (q - 2\rho) v^{(2)*} v^{(2)}$$
$$\le (q - 2\rho) v^* v.$$

THEOREM 1. Let M be an irreducible bipartite tournament matrix with team size $p \leq q$, p+q=n, and ρ the Perron value of M. Then, for an eigenvalue λ of M,

- (i) $-\frac{q}{2} \le \operatorname{Re} \lambda \le \frac{q}{2}$.
- (ii) Re $\lambda = -\frac{q}{2}$ if and only if $p = q = \frac{n}{2}$, $\lambda = -\rho = -\frac{n}{4}$ and the corresponding eigenvector is $v = (1, \dots, 1, -1, \dots, -1)^t$.
- (iii) Re $\lambda = \frac{q}{2}$ if and only if $p = q = \frac{n}{2}$, $\lambda = \rho = \frac{n}{4}$ and the corresponding eigenvector is $1 = (1, ..., 1)^t$.

Since $M=\begin{bmatrix} O_p & A \\ B & O_q \end{bmatrix}$, when $p=q=\frac{n}{2},\ M1=\frac{n}{4}1$ if and only if $Mv=-\frac{n}{4}v$, where $v=(1,\ldots,1,-1,\ldots,-1)^t$. In other words, M has either both eigenvalues $\frac{q}{2}$ and $-\frac{q}{2}$ or for any eigenvalue $\lambda,\ |\lambda|\leq \rho<\frac{q}{2}$. Note here that $\frac{n}{4}$ is the row sum of M and so n is a multiple of 4.

Proof. From inequality (2), $(2 \operatorname{Re} \lambda + q) v^* v \geq 0$ implies $\operatorname{Re} \lambda \geq -\frac{q}{2}$, where the equality holds if and only if $p = q = \frac{n}{2}$, $v_1 = \cdots = v_p$, $v_{p+1} = \cdots = v_n$, and $v^*1 = \sum_{i=1}^n \bar{v}_i = 0$. So $\operatorname{Re} \lambda = -\frac{q}{2}$ if and only if $p = q = \frac{n}{2}$ and the corresponding eigenvector is $v = (1, \ldots, 1, -1, \ldots, -1)^t$.

On the other hand, using inequality (3), we have $\operatorname{Re} \lambda \leq \rho \leq \frac{q}{2}$. And $\operatorname{Re} \lambda = \rho = \frac{q}{2}$ if and only if p = q and $\operatorname{var} v^{(1)} = \operatorname{var} v^{(2)} = \operatorname{var} w = 0$, i.e., the corresponding eigenvector is 1.

COROLLARY 2. Let $p=q=\frac{n}{2}$, and let $u=(u_1,\ldots,u_n)^t$ be an eigenvector of M, whose Perron value is $\frac{n}{4}$, corresponding to an eigenvalue μ with $\operatorname{Re} \mu \neq -\frac{n}{4}$. Then $u_1+\cdots+u_p=u_{p+1}+\cdots+u_n$.

Proof. From theorem 1, $v = (1, \ldots, 1, -1, \ldots, -1)^t$ is the eigenvector of M corresponding to $-\frac{n}{4}$. Pre- and post-multiplying v and u to equality (1), we obtain

$$(-\frac{n}{4} + \mu)v^*u = v^*(M + M^t)u$$

$$= v^*J_nu - v^* \begin{bmatrix} J_{\frac{n}{2}} & O_{\frac{n}{2}} \\ O_{\frac{n}{2}} & J_{\frac{n}{2}} \end{bmatrix} u$$

$$= 0 - \frac{n}{2}v^*u$$

So we have $v^*u = 0$.

3. Eigenvalues for normal bipartite tournament matrices

Now, we assume that M is an irreducible normal bipartite tournament matrix with team size $p \leq q$, p + q = n. Then M satisfies $MM^t = M^tM$.

We have shown [5] that M is normal if and only if the row sums of A= the column sums of $B=\frac{q}{2}$ and the row sums of B= the column sums of $A=\frac{p}{2}$. A and B have the same number of 1's, in other words, in a normal bipartite tournament, the total numbers of winning games of the two teams are equal.

Since M, M^t , and $M + M^t$ all commute, they are simultaneously diagonalizable by a unitary matrix P. Let $\lambda_1, \ldots, \lambda_n$ and μ_1, \ldots, μ_n be the eigenvalues of M and $M + M^t = \begin{bmatrix} O_p & J_{p,q} \\ J_{q,p} & O_q \end{bmatrix}$, respectively. Then we have

$$\begin{bmatrix} 2\operatorname{Re}\lambda_{1} & 0 \\ & \ddots & \\ 0 & 2\operatorname{Re}\lambda_{n} \end{bmatrix} = P^{*}MP + (P^{*}MP)^{*}$$

$$= P^{*}(M + M^{t})P = \begin{bmatrix} \mu_{1} & 0 \\ & \ddots & \\ 0 & \mu_{n} \end{bmatrix}.$$

Since the eigenvalues of J_k are 0 (mult. k-1) and k, the eigenvalues of $(M+M^t)^2=\begin{bmatrix}qJ_p&O_{p,q}\\O_{q,p}&pJ_q\end{bmatrix}$ are 0 (mult. n-2) and pq (mult. 2). From $\mathrm{tr}(M+M^t)=0$, we can see that the eigenvalues of $M+M^t$ should be 0 (mult. n-2), \sqrt{pq} , and $-\sqrt{pq}$. Hence, by (4), the eigenvalues of M are $\rho=\frac{1}{2}\sqrt{pq}$, $-\rho=-\frac{1}{2}\sqrt{pq}$ and n-2 purely imaginaries including 0.

Note that M can have 0 as an eigenvalue with multiplicity at most n-4, since $\operatorname{tr} M^2 = 0$. In fact, a bipartite irreducible tournament matrix M has at least 4 distinct eigenvalues [4], which means that M has at least two nonzero purely imaginary eigenvalues.

Theorem 3. An irreducible normal bipartite tournament matrix M has eigenvalues two nonzero real $\rho = \frac{\sqrt{pq}}{2}$, $-\rho = -\frac{\sqrt{pq}}{2}$, 2k purely imaginaries, and 0 of multiplicity n-2k-2, for some $k \geq 1$.

Remark that in the above theorem when $p=q=\frac{n}{2}$, a normal tournament matrix is also a regular matrix where the row sums of M are all constant $\frac{n}{4}$, and vice versa [5]. So when team sizes are equal, the eigenvalues of a regular bipartite tournament matrix M are two nonzero integer $\rho=\frac{n}{4},-\frac{n}{4},2k$ purely imaginaries, and 0 (mult. n-2k-2), for some $k \geq 1$.

4. The variance of the Perron vector

We have seen that $-\frac{q}{2} \leq \operatorname{Re} \lambda \leq \frac{q}{2}$ and $\operatorname{Re} \lambda = \frac{q}{2}$ is achieved when $p = q, \lambda = \rho$ for a regular bipartite tournament matrix M, that is, when M satisfies $M1 = \rho 1, \rho = \frac{n}{4}$. In this case, the Perron vector v satisfies $\operatorname{var} v^{(1)} = \operatorname{var} v^{(2)} = \operatorname{var} w = 0$, which implies that the players in the first

and the second teams are evenly ranked and two teams get the same ranking according to Kendall-Wei scheme [3,7].

Now, we assume that

(5)
$$\operatorname{var} v^{(1)} = \operatorname{var} v^{(2)} = \operatorname{var} w = 0,$$

for an eigenvector v corresponding to an eigenvalue λ of an irreducible bipartite tournament matrix M with team size $p \leq q$, p + q = n.

Equation (5) holds if and only if
$$v_1 = \cdots = v_p$$
, $v_{p+1} = \cdots = v_n$, and $v_1 + \cdots + v_p = v_{p+1} + \cdots + v_n$, equivalently, if and only if $v = (\underbrace{q, \ldots, q}_{p \text{ times}}, \underbrace{p, \ldots, p}_{q \text{ times}})^t$

is an eigenvector corresponding to λ .

From $Mv = \lambda v$, we obtain

$$\begin{bmatrix} ps_1 \\ \vdots \\ ps_p \\ qt_1 \\ \vdots \\ qt_q \end{bmatrix} = \begin{bmatrix} O_p & A \\ B & O_q \end{bmatrix} \begin{bmatrix} q \\ \vdots \\ q \\ p \\ \vdots \\ p \end{bmatrix} = \lambda \begin{bmatrix} q \\ \vdots \\ q \\ p \\ \vdots \\ p \end{bmatrix},$$

where $(s_1, \ldots, s_p)^t$ and $(t_1, \ldots, t_q)^t$ are the row sum vectors of A and B, respectively. So we have $s_1 = \cdots = s_p = s$, $t_1 = \cdots = t_q = t$, and

(6)
$$ps = \lambda q, \quad qt = \lambda p.$$

Since M satisfies (1), the number of 1's in M is pq, and so s and t should satisfy ps+qt=pq. Then using (6), we obtain $\lambda=\frac{ps+qt}{p+q}=\frac{pq}{p+q}=\frac{pq}{n}$, and the row sums of A and B are $s=\frac{q^2}{n}$ and $t=\frac{p^2}{n}$, respectively.

Here we see that n=p+q is of the form $n=a^2b$ for an integer $a\geq 2$ and a square free integer $b\geq 1$, and p and q have ab as a common divisor. For, if n is not divisible by a square, n can be written $n=\prod_{i=1}^m p_i$, for some distinct primes $p_i, i=1,\ldots,m$. Then $n|p^2$ implies each $p_i|p$ and so n|p, which is a contradiction. Now, the fact that $n=a^2b$ divides both p^2 and q^2 implies a|p, a|q and b|p, b|q. Hence we have p=abk and q=ab(a-k), where $1\leq k\leq \left[\frac{a}{2}\right]$, and $\lambda=\frac{pq}{n}=bk(a-k)$ is a positive integer. We summarize these results in the following theorem.

THEOREM 4. Let M be an irreducible bipartite tournament matrix with team size $p \leq q, p+q=n$. Suppose an eigenvector v of M satisfies (5).

Then there exist an integer $a \ge 2$, a square free integer $b \ge 1$, and an integer k with $1 \le k \le \left[\frac{a}{2}\right]$ such that the team sizes of this tournament are p = abk and q = ab(a - k); the corresponding eigenvalue is $\lambda = bk(a - k)$, which is a positive integer; the row sums of A and B are constants $s = b(a - k)^2$ and $t = bk^2$, respectively.

In particular, when a is even and $k = \frac{a}{2}$, we have a regular bipartite tournament matrix M with team size $p = q = \frac{n}{2}$, that is, row sums of M are all constant $\frac{n}{4}$.

COROLLARY 5. Let M in theorem 4 be normal. Equation (5) holds for the Perron vector v if and only if M is regular, that is, $M1 = \frac{n}{4}1$.

Proof. It suffices to prove the necessity. Since M is normal, the row sums of A= the column sums of $B=s=\frac{q}{2}$ and the row sums of B= the column sums of $A=t=\frac{p}{2}$ [5]. The Perron value is $\rho=\frac{\sqrt{pq}}{2}$ by theorem 3. On the other hand, from equation (6) with $\lambda=\rho$, we have $\rho=\frac{p}{q}\frac{q}{2}=\frac{p}{2}$. Hence, we obtain $p=q=\frac{n}{2}$ and $\rho=\frac{n}{4}$, which means $M1=\frac{n}{4}1$, by theorem 1. \square

Note that we can rewrite corollary 5 as equation (5) holds for the Perron vector v if and only if $p = q = \frac{n}{2}$; for when p = q, M is normal if and only if it is regular [5].

ACKNOWLEDGEMENT. The authors would like to thank the referee whose careful reading this paper has led to some corrections and the clarification of the last section.

References

- [1] R. Horn and C. R. Johnson, *Matrix Analysis*, Cambridge University Press, Cambridge (1985).
- [2] _____, Topics in Matrix Analysis, Cambridge University Press, Cambridge (1991).
- [3] M. G. Kendall, Further contributions to the theory of pair comparisons, Biometrics 11 (1955), 43-62.
- [4] S. J. Kirkland and B. L. Shader, On multipartite tournament matrices with constant team size, Linear and Multilinear Algebra 35 (1993), 49-63.
- [5] Y. Koh and S. Ree, On bipartite tournament matrices, Kangweon-Kyungki Mathematical Journal 7 (1999), 53-60.
- [6] B. L. Shader, On tournament matrices, Linear Algebra and Appl. 162-164 (1992), 335-368.
- [7] T. H. Wei, The algebraic foundations of ranking theory, Ph. D. thesis, Cambridge University (1952).

Department of Mathematics, University of Suwon, Suwon P. O. Box 77, Kyungki-Do 440-600, Korea

E-mail: ymkoh@mail.suwon.ac.kr swree@mail.suwon.ac.kr