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SPECTRAL PROPERTIES OF
BIPARTITE TOURNAMENT MATRICES

YOUNGMEE KOH AND SANGWOOK REE

ABSTRACT. In this paper, we lock at the spectral bounds of a bipar-
tite tournament matrix A with arbitrary team size. Also we find the
condition for the variance of the Perron vector of M to vanish.

1. Introduction

Let p and g be positive integers. A digraph obtained by orienting each
edge of the complete bipartite graph K, , is called a bipartite tournament
with team size p and ¢, and the associated adjacency (0, 1)-matrix is called a
bipartite tournament matriz. It is interpreted as the result of a round-robin
competition between two teams in which each player in a team competes
every player in the other team.

We assume that two teams respectively consist of players in the sets
{1,2,...,p}and {p+1,p+2,...,p+q}. Let p+ g =n. Then a bipartite
tournament matrix of order n with team size p and g is written M =
{% i}, where O, is the zero matrix of order p, A is a p X g (0,1)-
matrix, and B = J;; — A?, where J, , is the g X p matrix with 1’s for all
entries. The matrix M satisfies

Jp O o, J
1 M—{-Mt:J—[ P P,qj|=[ P P,q:|}
( ) " Oq,p Jq JQ:P Oq

where O, , is the p X ¢ zero matrix and J,, = J,, ..

M,

A matrix M is called reducible if PM P! = [ . for some per-

4

mutation matrix P, where M; and M; are nonvacuous square tmatrices,
and #rreducible otherwise. If a bipartite tournament matrix M is reducible,
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then the submatrices M, and M, of PM P! are again bipartite tournament
matrices. To study the spectral properties of M, it is enough to look at its
irreducible components.

It is well known by Perron-Frobenius theorem [1] that a nonnegative
irreducible matrix M has its spectral radius p as a positive eigenvalue,
called the Perron value, and a corresponding eigenvector consists of all
positive coordinates, and the eigenvector the sum of whose coordinates is
1 is called the Perron vector of M.

We find the spectral bounds of an irreducible bipartite tournament ma-
trix M with arbitrary team size p and g. Especially, when M is normal, M
has two nonzero real eigenvalues +,/pg/2, and the variance of the Perron
vector of M vanishes if and only if M1 = 71, wheren=p+gq.

2. Spectral Properties

Let M be a bipartite tournament matrix with teamsizep < g, p+g=n
and let A be an eigenvalue of M and v an eigenvector such that Mv = Av.

Pre- and post-multiplying v to equality (1) and applying Schwartz in-
equality, we cbtain

(2)
(2Re Mvtv = v* (M + M*)u

Iy Op.q}

= nU_['E']_,...,'I_)n] |:Oq,p Jq

Un
D P n 7L
= |"U*1|2 —Z’f)i 'Z”Ui - Z ;- Z v
i=1 =1 i=p+l  i=p+l
> 1P = p (ol + oot o) = g (fpal® + -+ o)
> |u*1)? — qv*y,

where 1 = (1,..., 1}

The variance of a vector v = (v,...,v,)! is defined by
varv = E lv; — v;|*
1<i<j<n

Let M be an irreducible bipartite tournament matrix with team size
p < g, p+q = n, p the Perron value of the matrix, and v = (v1,...,v,)"
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the corresponding eigenvector. Denote

o) = (v1, ___’,Up)t’ 2 = (Up+1,---,vn)t
P n
w= (wlaw2)t1 w = Zvi’ Wo = 2 (R

=1 i=p+1
Pre- and post-multiplying v to equality (1), we have

L [w
_ O, J

* By — = P Ypy

(M + MY =[t,...,0) [Jq,p OqJ

Un

= w w — |w; — wol?.

Since
wrw = oy 4o+ R+ s 4+
=p(uilP 4+l = Y -yl
1<i<j<p
+a(fopnl’ + -+l = Y -l
pr1<i<i<n
= prM* oM 4 go@* @ _varv® — var (@,
we have
2pv*v = pr* el 4 gu@p@ —vary™ —varv® — varw
or
0 < varvV £ varv® 4 varw
(3) = (p—2p) vV 4 (g — 2p) v@* 0@

< (g-2p)v"w.

THEOREM 1. Let M be an irreducible bipartite tournament matrix with
team size p < g, p+ q = n, and p the Perron value of M. Then, for an
eigenvalue A of M,

(i} —% <ReA < .
(ii) ReA = -4 ifand only if p = ¢ = 5, A = —p = — % and the corre-
sponding eigenvector isv = (1,...,1,—1,...,—1)%
(iii) ReA = £ ifand only if p=q = %, A= p = § and the corresponding
eigenvector is 1 = (1,..., 1)



186 Youngmee Koh and Sangwook Ree

. 1O, A o g )
Since M = [B Oq},whenp—Q— 2, M1 = %1 if and only if
Mv = —2v, where v = (1,...,1,—1,...,=1)*. In other words, M has

either both eigenvalues € and — or for any eigenvalue X, || < p < 4.
Note here that % is the row sum of M and so n is a multiple of 4.

Proof. From inequality (2), (2ReX + ¢)v*v > 0 implies ReX > -4

(%]

where the equality holds if and only if p=q =5, v1 = - = ¥, Upt1 =
c-=wup,and v*l=3 . 9, =0. SoReA=—Z ifandonlyif p=¢g=7%
and the corresponding eigenvector is v = (1,...,1,—1,...,—=1)%,

On the other hand, using inequality (3), we have ReX < p < . And
ReA = p =1 if and only if p = g and var vl = varv(® = varw = 0, i.e.,
the corresponding eigenvector is 1. O

COROLLARY 2. Let p=¢ =%, and let u = (u1,...,un)" be an eigenvec-
tor of M, whose Perron value is %, corresponding to an eigenvalue pr with
Rep # —%. Then uy + -+ up = Upg1 + -+ + Un.

Proof. From theorem 1, v =(1,...,1,—1,...,—1)! is the eigenvector of

M corresponding to —%. Pre- and post-multiplying v and « to equality
(1), we obtain

(—g + vt = v (M + M%u

* * ‘; O%
=v"Jou—v [ J%}u

So we have v*u = 0, O

3. Eigenvalues for normal bipartite tournament matrices

Now, we assume that M is an irreducible normal bipartite tournament
matrix with team size p < g, p + g = n. Then M satisfies MM*' = M*M.

We have shown [5] that M is normal if and only if the row sums of A =
the column sums of B =  and the row sums of B = the column sums of
A =2 A and B have the same number of 1’s, in other words, in a normal
bipartite tournament, the total numbers of winning games of the two teams
are equal.
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Since M, M*, and M + M" all commute, they are simultaneously diag-
onalizable by a unitary matrix P. Let Aq,..., A, and uq,...,u, be the

eigenvalues of A and M + M* = [ Op  Jpg ], respectively. Then we have

Jop Oy
2Re My 0
. =P*MP+ (P"MP)"
0 2Re A,
(4) " 0
=P (M +MHP =
0 Hn

Since the eigenvalues of Jy, are 0 (mult. & — 1) and k, the eigenvalues of

(M + M%)? = [qu Op’q} are 0 (mult. n —2) and pg (mult. 2). From
Oap  PJq

tr(M + M*') = 0, we can see that the eigenvalues of M + M?* should be 0

(mult. n —2), \/pg, and —,/pg. Hence, by (4), the eigenvalues of M are

p=%\/Pq, —p = —%./Pq and n — 2 purely imaginaries including 0.

Note that M can have 0 as an eigenvalue with multiplicity at most n—4,
since trM? = 0. In fact, a bipartite irreducible tournament matrix M has
at least 4 distinct eigenvalues [4], which means that M has at least two
nonzero purely imaginary eigenvalues.

THEOREM 3. An irreducible normal bipartite tournament matrix M has

eigenvalues two nonzero real p = —"_,fq, —p= —3@, 2k purely imaginaries,

and 0 of multiplicity n — 2k — 2, for some k > 1.

Remark that in the above theorem when p = ¢ = %, a pormal tour-
nament matrix is also a regular matrix where the row sums of M are all
constant %, and vice versa [5]. So when team sizes are equal, the eigen-
values of a regular bipartite tournament matrix M are two nonzero integer
p = 4. —%, 2k purely imaginaries, and O(mult. »n— 2k —2), for some k > 1.

4. The variance of the Perron vector

We have seen that —2 < ReA < { and ReX = £ is achieved when
p = ¢, A = p for a regular bipartite tournament matrix M, that is, when

M satisfies M1 = pl,p = %. In this case, the Perron vector v satisfies

varv\?) = varv? = varw = 0, which implies that the players in the first
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and the second teams are evenly ranked and two teams get the same ranking
according to Kendall-Wei scheme [3,7].
Now, we assume that

(5) var v = var v'¥ = varw = 0,

for an eigenvector v corresponding to an eigenvalue A of an irreducible
bipartite tournament matrix M with team size p < ¢, p+¢g=n.
Equation (5) holds if and only if v; =+ = vp, ¥pqy1 = - = Up, and 01+
- 4 Up = Upp1+ <+ + Uy, equivalently, if and only if v = (g,...,q,p, .- ,p)t
p times g times
is an eigenvector corresponding to A.
From Mv = Av, we obtain

[ Ps1] q q7

PSp :[Op A] a| _\ |9

qtl B Oq P P
L gtg Lp ] Lp
where (s1,...,8,)" and (t1,...,t,)" are the row sum vectors of A and B,
respectively. So we have sy =+ - =38, =8,t; =--- =t; =1, and
(6} ps=Ag, gt =Ap.

Since M satisfies (1), the number of 1’s in M is pg, and so s and ¢ should

. _ . . _ pstgt _ pq __ pq
satisfy ps+ gt = pg. Then using (6}, we obtain A = p—erq =g =" and

2 2
the row sums of A and B are s = & and t = -, respectively.

Here we see that n = p—+q is of the form n = a*b for an integer ¢ > 2 and
a square free integer b > 1, and p and ¢ have ab as a common divisor. For,
if n is not divisible by a square, n can be written n = Hf;l p;, for some
distinct primes p;,¢ = 1,...,m. Then n|p? implies each p;|p and so n|p,
which is a contradiction. Now, the fact that n = a2b divides both p* and
¢* implies a|p, a|g and b|p, b|g. Hence we have p = abk and g = ab{a — k),
where 1 < k < [%], and A = B = bk(a — k) is a positive integer. We
summarize these results in the following theorem.

THEOREM 4. Let M be an irreducible bipartite tournament matrix with
team size p < q,p + ¢ = n. Suppose an eigenvector v of M satisfies (5).
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Then there exist an integer a > 2, a square free integer b > 1, and an integer
k with 1 < k < [2] such that the team sizes of this tournament are p = abk
and ¢ = ab(a — k); the corresponding eigenvalue is A = bk(a — k), which is
a positive integer; the row sums of A and B are constants s = b(a — k)?
and t = bk?, respectively.

In particular, when a is even and & = 5, we have a regular bipartite
tournament matrix M with team size p = g = §, that is, row sums of M
are all constant 7.

COROLLARY 5. Let M in theorem 4 be normal. Equation (5) holds for
the Perron vector v if and only if M is regular, that is, M1 = }1.

Proof. Tt suffices to prove the necessity. Since M is normal, the row sums
of A = the column sums of B = s = 2 and the row sums of B = the column

sums of A =t = § [5]. The Perron value is p = @ by theorem 3. On the
other hand, from equation (6) with X = p, we have p = E% = £. Hence, we
obtain p = ¢ = 3 and p = %, which means M1 = 71, by theorem 1. |

Note that we can rewrite corollary 5 as equation (5) holds for the Perron
vector v if and only if p = ¢ = 3; for when p = ¢, M is normal if and only
if it is regular [5].
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