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FACTOR RANK COMPARISONS OF
MATRICES OVER TWO RELATED SEMIRINGS

SEOK-ZUN SONG

ABSTRACT. We consider matrices whose entries can be viewed as el-
ements of both nonnegative integers and nonnegative rational num-
bers. We determine the differences of factor rank of matrices over
the two semirings.

1. Introduction and preliminaries

A semiring is a binary system (S, +, x) such that (.S, +) is an Abelian
monoid (identity 0), (S, x) is an Abelian monoid (identity 1), x dis-
tributes over 4+, 0 x s = s x 0 = 0 for all s in S, and 1 # 0. Usually
S denotes the system and x is denoted by juxtaposition. Some ex-
amples of semiring which occur in combinatorics are Boolean algebra
and the nonnegative integers with usual arithmatic. The concepts of
matrix theory are defined over a semiring as over a field. Recently a
number of authors have studied various problems of matrix theory over
semirings(see [1]-[8]).

Let S be a semiring and M, ,,(S) be the set of m x n matrices with
entries in S. If A € My, »(S), then the factor rank 2, 8](or semiring
rank in [3, 4]) of A over S is the smallest integer k£ such that A can be
factored as A = BC where B € M, 1,(S) and C € My »(S). This factor
rank is the same concept as rank when the semiring is a field. We denote
the factor rank of a matrix A over S by ¢s(A).

In this paper, we compare the factor ranks when a matrix in M, x(Z1)
is considered as a matrix in M, x(Q1) or M, x(R*), where Z* , Q* and
R* denote the semiring of nonnegative integers, nonnegative rational
numbers and nonnegative real numbers, respectively.

For various factor rank comparisons, Beasley, Kirkland and Shader
obtained some theorems in [2], and Beasley and Song also obtained some
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theorems in [4]. In this paper, we obtain two results on the comparisons
of factor ranks of matrices over Z+ and Q, respectively.

2. Factor rank comparisons of nonnegative matrices

LEMMA 2.1. If K is a subsemiring of S, then ¢x(A) > ¢pgs(A) for
every matrix A € My, (K).

PROOF. Assume that ¢x(A) = k. Then there exist matrices B &
My, x(K) and C' € Mg ,(K) satisfying A = BC. Since B and C are in
M, x(S) and M ,,(S) respectively, we have ¢s(A) < k. |

ExAMPLE 2.2. The inequality in Lemma 2.1 may be strict. For
example, consider

0 2 3
A=|1 3 7
5 1 14
Then
0 2 s
A=11 3 { 03 ] ,
5 1 2
from which it follows that
(1) pg+(A) = 2.
Now, we claim that
(2) ¢z+(A) =3.
To show (2), suppose that A can be factored over Z* as [b1 | b2]C, where
b1 b1a
by = |bo1|, by= |by|and C= [0” €12 013] .
C21 C22 Ca23
bs1 bz

Then the first column of A is a linear combination of by and by over
Z%. That is,

0

1| = c11b1 + co1bs.

5

Hence we may assume that

= O
v
=
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(where the inequality holds entrywise). Thus the first entry b1 of b; is
zero. Then the first entry byo of by cannot be zero, since if b7 = b1 = 0,
then the first row of A would be a zero row. Thus c¢3; must be zero and

0
hence b; and (1| must equal.
5
For the second column of A, we have
2 0
3| =ci2 [1]| + cazba.
1 5
2
Then c13 = 0 from 1 = 5¢12 + b3aces. Therefore by must be |3].
1
Now, consider the third column of A. Then we have
3 0 2
7Tl =c3 |1} +ca |3
14 5 1

But this is impossible since the nonnegative integer cog must satisfy
3=0-c13+ 2 co3. Thus we see that ¢z+(A) = 3, as required in (2).

LemMA 2.3. ([1]) Suppose that A is a p X ¢ matrix over a semiring
S. If

A=[§ 8] then ¢s(A) = ps(B).

LEMMA 2.4. If a matrix A € My, n(Z7) satisfies ¢g+(A) = 1, then
$z+(A) =1

PROOF. Suppose that ¢o+(A) = 1. Then we can factor A as A = bc?
where b € M, 1 (Q™) and ¢ € M, 1(Q™). Let b;(or ¢;) be an entry in b
(or ¢, respectively). If b;(or c;) is zero, then the ith row (or jth column,
respectively) of A is zero, and hence the zero row (or zero column) does
not change the factor rank of A over Z*. Thus without loss of generality,
we may assume that all entries of b and ¢ are positive rational numbers.
Then for a fixed positive entry b; of b, we have

(3) be _ bwej ok

bi biCj Q5
Since ag; and a;; are integers, 2—’; is a rational number for each k €
{1,2,...,m} and each j € {1,2,...,n}. Write each Z—’: in lowest term
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as %f with pg,qr € Z1 and let L be the least common multiple of the
gr’s. For any k£ and j we have 1;—’;; -bicj = ag; € ZT by (3). Then each g
divides b;c; and hence L divides b;c; for any j. Consequently, (%)(blc)
is a vector with entries in ZT, and b%_b is a vector with entries in Z* by
the construction of L. Therefore A can be factored as {(%)(bzc)}(b%b)
in Z*, which shows that ¢+ (A4) = L. O

Suppose that T is a subsemiring of S. Let ®(7T, S, m,n) denote the
maximum integer k such that there exists a matrix in M, ,(T) with
factor rank k and for every A € M, ,(T) with ¢r(A) < k£ we have

¢r(A) = ¢s(A).
In the followings we obtain the value of ®(Z+,Q*,m,n).

LEMMA 2.5. Suppose that T is a subsemiring of S. For some matrix
A e M, qo(T), if pr(A) > ¢s(A), then for allm > p and n > g,

O(T,S,m,n) < pp(A).

Proor. It follows directly from the definition of ®(T, S, m,n) and
Lemma 2.3. O

THEOREM 2.6.
$(2%,Q*,mn) = {

PROOF. If min(m,n) =1, then a matrix A € M,, ,(Z") has factor
rank 1 or 0. For each case, A has factor rank 1 or 0 respectively, as a
matrix in My, ,(Q%). Thus ®(Z*,Q*,m,n) =1 if min(m,n) = 1.

If min(m,n) = 2, then ®(Z*,Q*, m,n) < 2.

Let min(m,n) > 3. Then Example 2.2 shows that there exists a
matrix A € M33(Z7") such that 3 = ¢z+(A) > ¢g+(A) = 2. And
Lemma 2.5 shows that ®(Z%,Q™,m,n) <2 for m > 3 and n > 3. Thus
we have

(4) (Z1,QF,m,n) <2

for min(m,n) > 2.

Suppose that A € My, ,(Z7) satisfies ¢g+(A) = 1 for min(m,n) >
2. Then A has factor rank 1 over Z+ by Lemma 2.4. Of course, if
¢z+(A) =1 then ¢g+(A) = 1 by Lemma 2.1. Hence we have
(5) ¢pz+(A) =1 if and only if ¢g+(4)=1

for any A € M, ,(Z7).

1 if min(m,n) =1,
2 otherwise.
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Now suppose that ¢+ (A) =2 for A € My, ,(Z71) with min(m,n) >
2. Then ¢g+(A) < 2 by Lemma 2.1. But ¢g+(A) # 1 by (5). Thus
dg+(A) = 2. Therefore

(6) ®(ZT,Q",m,n) > 2.
From (4) and (6), we have ®(Z*,Q%,m,n) = 2 for min(m,n) > 2. O

COROLLARY 2.7.

1 if min(m,n) =1,

+ pt -
®(Z",RT,m,n) _{ 2 otherwise.

PROOF. It is similar to the proof of Theorem 2.6. 0

In [2] (Theorem 4.4), Beasley, Kirkland and Shader obtained a result
for ®(Z+, R, m,n) as follows ;

2 if min(m,n) =2,

+ p+ -
®(ZT,RT,m,n) —{ 1 otherwise.

But we remark that this result is revised in the Corollary 2.7.

Now, we consider the matrices over the field @ of rational numbers
and determine the value of ®(Q*, Q,m,n).

LEMMA 2.8. If A € Mpn(Q™), then ¢g+(A) = 1 if and only if
$o(4) =1.

PROOF. Suppose that A € My, (QT1). If ¢g(A) = 1, then cach
column of A is a multiple of the first nonzero column of A by a rational
number. Consequently, each column of A is a nonnegative multiple of
that column by rational number, and hence ¢g+(A) =1 as well.

The converse follows from Lemma 2.1. O

LEMMA 2.9. Let A € My, ,(Q") with min(m,n) > 2. Then ¢g(A) =
2 if and only if ¢g+(A) = 2.

PROOF. If ¢+ (A) = 2 then ¢g(A) = 2 by Lemmas 2.1 and 2.8. Sup-
pose that A € My, »(Q") and ¢g(A) = 2. We will show that g+ (4) = 2
by using induction on the column n of A. For n = 2, ¢g(A) = 2 implies
that ¢g+(A4) < 2. But Lemma 2.8 implies that ¢g+(A4) = 2.

Now, suppose that it holds for n > 2. Let A € M, ,4+1(Q") and
do(A) =2. Put A = [aj]ag|- - |ap|ant1] and let Ay = [a]ag|- - - |an] be
an m x n submatrix of A. If ¢g(A1) = 1, then there exist one nonzero
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column a; of A; such that a; = a;a; with o; € Q% for i = 1,2,...,n.
Thus A can be factored as follows :

op o ap_y O
A= [ai an+1] |:01 02 76 1 1:| .
Since this factorization shows that ¢g+(A) < 2. Hence we have ¢g+(A)
= 2 by Lemma 2.8.
If g(A1) = 2, then ¢g+(A1) = 2 by the induction assumption.
Hence we can factor A4; as follows :

i1 Ciz - Cin
(7) A1 = B1C1 = [by|by] [621 Cop e Czn} )
where By € M, 2(QT) and C; € My ,(Q).

Then each column a; in A; can be written as a; = cj;b1 + cg;by for
i=12,...,n.

Further, over a field ¢), the two vectors by and by are in the column
space of Aj(and A ) since they may be written as linear combinations
of two linearly independent columns of Ay over Q. Since ¢g(A) = 2,
the column rank of A is also 2 over the field (). Hence the three vectors

by, bs and a,41 in the column space of A are linearly dependent over
Q. Thus there exist «, # and ~, not all zero, in @ such that

abi + by + vag41 = 0.

Since all the entries of b1, by and a1 are nonnegative rational numbers,
one of «, 8 and « is positive while another is negative. It follows that
there are rational numbers p,q € Q' such that one of the following
holds:

(a) by =pby+ganiy; (b) be =pbi+gant1; (c) ant1 =pby+gba.
Let us use (7) for the factorization of A in each case. For the case (a),
we have

A = [ai]az]- - - |ap|an+1]

Ci11 - Cin
= [by|bg) [Cm e

Sfer
| I

11 "+ Cin
€21 - Con

= [ans1]bs] gcii gci2 cee . Cin 1 _
nt pci1 +co1 pei2+co2 -+ pcipt+cop O

= [pby + qan41|b2] [

I
QI'BQI
| I— |
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For the case (b), we have

A= [al|32| s |an\a'n.+1]
=P
€11 €12 ‘' Clp
= |b1|pb1 + qa »
[brjpb1 + gan+1] [021 c2 r Com %}
— [b1lan] ci1+pc1 cig+pea2 - Cintpeen 0
nr qca1 qca2 e qcon 1
For the case (c), we have
A= [a1|a2| tet |an|an+1]
ci1 €12 *** Cin D
= b+lb .
[b1[b2] [021 Cy2 - Cop Q}

Thus we have factored A as the product of both a matrix in My, 2(Q%)
and a matrix in Mg ,+1(Q7) in each case. Therefore ¢g+(4) =2. O

1 0 0 1
1100 +
ExaMPLE 2.10. Let M = 01 10 € My4(Q"). Then we
0 011
have
i ? 8 1 00 1
M= 010 -1
0 11 0 01 1
0 01

Thus ¢g(M) = 3. Since ¢gr+(M) = 4 from [2](Example 4.3), we have
$po+(M) = 4 by Lemma 2.1.

Now, we have the following factor rank comparison Theorem.

THEOREM 2.11.

+ _{ min{m,n} if min(m,n) < 3,
®(Q7,Q,m,n) = { 2 otherwise.

Proor. If min{m,n} < 2, then ®(Q*,Q,m,n) = min{m,n} by
Lemmas 2.8 and 2.9.

Let min{m,n} = 3. If pg(A) = 3 for an mxn matrix A € My, n(Q"),
then ¢g+(A) > 3. But we have ¢g+(A) < min{m,n} = 3.
Hence ®(Q™, @, m,n) = 3 from Lemmas 2.8 and 2.9.

If min{m,n} > 4, then Example 2.10 shows that ®(Q*,Q,m,n) =
2. O
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