• Title/Summary/Keyword: mathematising teaching and learning methods

Search Result 6, Processing Time 0.02 seconds

수준상승에 기초한 수학학습지도에 관한 연구

  • Lim, Dae-Keun;Kim, Hyun-Jung
    • East Asian mathematical journal
    • /
    • v.28 no.4
    • /
    • pp.353-361
    • /
    • 2012
  • In this paper, we apply mathematising activities to geometry contents of corrent in middle and high school in order to actualize learning and teaching through Freudenthal's, Piaget's, and Van Hieles's mathematising among many theories affecting teaching and learning methods. Learners find out mathematical idea through the activities of mathematising that interprete mathematical problemm. And we derive mathematic through the experience of vertical mathematising that expresses it. Based on it, Freudenthal's progressive mathematising process, etc are used in doing the activities of applicative mathematising.

"Mathematising learning and teaching methods" using dynamic software in geometry (탐구형 소프트웨어를 활용한 기하영역의 수학화 교수학습 방법)

  • 정보나;류희찬;조완영
    • Journal of Educational Research in Mathematics
    • /
    • v.12 no.4
    • /
    • pp.543-556
    • /
    • 2002
  • The purpose of this study is to find a method to improve geometry instruction. For this purpose, I have investigated aims and problems of geometry education. I also reviewed related literature about discovery methods as well as verification. Through this review, “Mathematising teaching and learning methods” by Freudenthal is Presented as an alternative to geometry instruction. I investigated the capability of dynamic software for realization of this method. The result of this investigation is that dynamic software is a powerful tool in realizing this method. At last, I present one example of mathematic activity using dynamic software that can be used by school teachers.

  • PDF

Effect of Mathematising Learning Using Realistic Context on the Children's Mathematical Thinking (현실적 맥락을 활용한 수학화 학습이 아동의 수학적 사고에 미치는 효과 -초등학교 5학년 도형 영역을 중심으로-)

  • Kim, Yoo-Jin
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.11 no.2
    • /
    • pp.99-115
    • /
    • 2007
  • The purpose of this study was to look into whether this mathematising learning utilizing realistic context has an effect on the mathematical thinking. To solve the above problem, two 5th grade classes of D Elementary School in Seoul were selected for performing necessary experiments with one class designated as an experimental group and the other class as a comparative group. Throughout 17 times for six weeks, the comparative group was educated with general mathematics learning by mathematics and "mathematics practices," while the experimental group was taught mainly with mathematising learning using realistic context. As a result, to start with, in case of the experimental group that conducted the mathematising learning utilizing realistic coherence, in the analogical and developmental thoughts which are mathematical thoughts related to the methods of mathematics, in the thinking of expression and the one of basic character which are mathematical thoughts related to the contents of mathematics, and in the thinking of operation, the average points were improved more than the comparative group, also having statistically significant differences. The study suggested that it is necessary to conduct subsequent studies that can verify by expanding to each grade, sex and region, develop teaching methods suitably to the other content domains and purposes of figures, and demonstrate the effects. In addition to those, evaluation tools which can evaluate the mathematical thinking processes of children appropriately and in more diversified methods will have to be developed. Furthermore, in order to maximize mathematising for each group in each mathematising process, it would be necessary to make efforts for further developing realistic problem situations, works and work sheets, which are adequate to the characteristics of the upper and lower groups.

  • PDF

A Study on Mathematizing Teaching and Learning in Highschool Calculus (고등학교 미적분에서의 수학화 교수.학습에 관한 연구)

  • Cho, Wan-Young
    • School Mathematics
    • /
    • v.8 no.4
    • /
    • pp.417-439
    • /
    • 2006
  • Many studies indicate the emerging crisis of education of calculus even though the emphasis of calculus have been widely recognized. In our classrooms, the education of calculus also has been faced with its bounds. Most instructions of calculus is too much emphasis on the algebraic approach, thus students solve mathematical problems without truly understanding the underlying concept. The purpose of this study is to develop mathematization teaching and learning materials and methods in caculus based on the mathematization teaching and learning theories by Freudenthal and the variability principles of conceptual learning by Dienes, In order to this purpose, first, we analyzed the high school mathematics II textbook of 7th curriculum in Korea. Second, we developed mathematization teaching and learning materials and methods in highschool calculus. Consequently, the following conclusions have been drawn: we have reorganized and reconstructed the context problem in calculus based on concepts of tangent line and instantaneous rate of change.

  • PDF

A Study on the Definitions Presented in School Mathematics (학교수학 교과서에서 사용하는 정의에 관한 연구)

  • 우정호;조영미
    • Journal of Educational Research in Mathematics
    • /
    • v.11 no.2
    • /
    • pp.363-384
    • /
    • 2001
  • The purpose of this thesis is, through analysing the characteristics of the definitions in Korean school mathematics textbooks, to explore the levels of them and to make suggestions for definition - teaching as a mathematising activity, Definitions used in academic mathematics are rigorous. But they should be transformed into various types, which are presented in school mathematics textbooks, with didactical purposes. In this thesis we investigated such types of transformation. With the result of this investigation we tried to identify the levels of the definitions in school mathematics textbooks. And in school mathematics textbooks there are definitions which carry out special functions in mathematical contexts or situations. We can say that we understand those definitions, only if we also understand the functions of definitions in those contexts or situations. In this thesis we investigated the cases in school mathematics textbooks, when such functions of definition are accompanied. With the result of this investigation we tried to make suggestions for definition-teaching as an intellectual activity. To begin with we considered definition from two aspects, methods of definition and functions of definition. We tried to construct, with consideration about methods of definition, frame for analysing the types of the definitions in school mathematics and search for a method for definition-teaching through mathematization. Methods of definition are classified as connotative method, denotative method, and synonymous method. Especially we identified that connotative method contains logical definition, genetic definition, relational definition, operational definition, and axiomatic definition. Functions of definition are classified as, description-function, stipulation-function, discrimination-function, analysis-function, demonstration-function, improvement-function. With these analyses we made a frame for investigating the characteristics of the definitions in school mathematics textbooks. With this frame we identified concrete types of transformations of methods of definition. We tried to analyse this result with van Hieles' theory about levels of geometry learning and the mathematical language levels described by Freudenthal, and identify the levels of definitions in school mathematics. We showed the levels of definitions in the geometry area of the Korean school mathematics. And as a result of analysing functions of definition we found that functions of definition appear more often in geometry than in algebra or analysis and that improvement-function, demonstration-function appear regularly after demonstrative geometry while other functions appear before demonstrative geometry. Also, we found that generally speaking, the functions of definition are not explained adequately in school mathematics textbooks. So it is required that the textbook authors should be careful not to miss an opportunity for the functional understanding. And the mathematics teachers should be aware of the functions of definitions. As mentioned above, in this thesis we analysed definitions in school mathematics, identified various types of didactical transformations of definitions, and presented a basis for future researches on definition teaching in school mathematics.

  • PDF

A Study of Exploration- Oriented Mathematical Modeling: (탐구지향 수학적 모델링에 관한 연구)

  • 신은주;권오남
    • Journal of Educational Research in Mathematics
    • /
    • v.11 no.1
    • /
    • pp.157-177
    • /
    • 2001
  • Modern society's technological and economical changes require high-level education that involve critical thinking, problem solving, and communication with others. Thus, today's perspective of mathematics and mathematics learning recognizes a potential symbolic relationship between concrete and abstract mathematics. If the problems engage students' interests and aspiration, mathematical problems can serve as a source of their motivation. In addition, if the problems stimulate students'thinking, mathematical problems can also serve as a source of meaning and understanding. From these perspectives, the purpose of my study is to prove that mathematical modeling tasks can provide opportunities for students to attach meanings to mathematical calculations and procedures, and to manipulate symbols so that they may draw out the meanings out of the conclusion to which the symbolic manipulations lead. The review of related literature regarding mathematical modeling and model are performed as a theoretical study. I especially concentrated on the study results of Freudenthal, Fischbein, Lesh, Disessea, Blum, and Niss's model systems. We also investigate the emphasis of mathematising, the classified method of mathematical modeling, and the cognitive nature of mathematical model. And We investigate the purposes of model construction and the instructive meaning of mathematical modeling. In conclusion, we have presented the methods that promote students' effective model construction ability. First, the teaching and the learning begins with problems that reflect reality. Second, if students face problems that have too much or not enough information, they will construct useful models in the process of justifying important conjecture by attempting diverse models. Lastly, the teachers must understand the modeling cycle of the students and evaluate the effectiveness of the models that the students have constructed from their classroom observations, case study, and interaction between the learner and the teacher.

  • PDF