• Title/Summary/Keyword: mathematics class

Search Result 2,467, Processing Time 0.028 seconds

THE CONE PROPERTY FOR A CLASS OF PARABOLIC EQUATIONS

  • KWAK, MINKYU;LKHAGVASUREN, BATAA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.2
    • /
    • pp.81-87
    • /
    • 2017
  • In this note, we show that the cone property is satisfied for a class of dissipative equations of the form $u_t={\Delta}u+f(x,u,{\nabla}u)$ in a domain ${\Omega}{\subset}{\mathbb{R}}^2$ under the so called exactness condition for the nonlinear term. From this, we see that the global attractor is represented as a Lipshitz graph over a finite dimensional eigenspace.

ASYMPTOTIC APPROXIMATION OF KERNEL-TYPE ESTIMATORS WITH ITS APPLICATION

  • Kim, Sung-Kyun;Kim, Sung-Lai;Jang, Yu-Seon
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.147-158
    • /
    • 2004
  • Sufficient conditions are given under which a generalized class of kernel-type estimators allows asymptotic approximation on the modulus of continuity. This generalized class includes sample distribution function, kernel-type estimator of density function, and an estimator that may apply to the censored case. In addition, an application is given to asymptotic normality of recursive density estimators of density function at an unknown point.

AN EXPLICIT FORMULA AND ITS FAST ALGORITHM FOR A CLASS OF SYMMETRIC BALANCED INCOMPLETE BLOCK DESIGNS

  • KANG SUNGKWON;LEE JU-HYUN
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.105-125
    • /
    • 2005
  • Motivated by the field experimental designs in agriculture, the theory of block designs has been applied to several areas such as statistics, combinatorics, communication networks, distributed systems, cryptography, etc. An explicit formula and its fast computational algorithm for a class of symmetric balanced incomplete block designs are presented. Based on the formula and the careful investigation of the modulus multiplication table, the algorithm is developed. The computational costs of the algorithm is superior to those of the conventional ones.

Sharp Coefficient Bounds for the Quotient of Analytic Functions

  • Park, Ji Hyang;Kumar, Virendra;Cho, Nak Eun
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.231-242
    • /
    • 2018
  • We derive sharp upper bound on the initial coefficients and Hankel determinants for normalized analytic functions belonging to a class, introduced by Silverman, defined in terms of ratio of analytic representations of convex and starlike functions. A conjecture related to the coefficients for functions in this class is posed and verified for the first five coefficients.

ON M-SETS

  • Han, Song Ho;Min, Won Keun;Chang, Hong Soon
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.315-320
    • /
    • 1999
  • In this paper, we introduce the subsupratopology and the productsupratopology. In particular, we will show the class induced by a restricted supratopology contains the restricted class induced by the supratopology.

  • PDF

A CLASS OF SERIES INVOLVING THE ZETA FUNCTION

  • Lee, Hye-Rim;Cho, Young-Joon;Lee, Keum-Sik;Seo, Tae-Young
    • East Asian mathematical journal
    • /
    • v.16 no.2
    • /
    • pp.303-315
    • /
    • 2000
  • The authors apply the theory of multiple Gamma functions, which was recently revived in the study of the determinants of the Laplacians, in order to present a class of closed-form evaluations of series involving the Zeta function by appealing only to the definitions of the double and triple Gamma functions.

  • PDF

STABILITY OF A CLASS OF DISCRETE-TIME PATHOGEN INFECTION MODELS WITH LATENTLY INFECTED CELLS

  • ELAIW, A.M.;ALSHAIKH, M.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.4
    • /
    • pp.253-287
    • /
    • 2018
  • This paper studies the global stability of a class of discrete-time pathogen infection models with latently infected cells. The rate of pathogens infect the susceptible cells is taken as bilinear, saturation and general. The continuous-time models are discretized by using nonstandard finite difference scheme. The basic and global properties of the models are established. The global stability analysis of the equilibria is performed using Lyapunov method. The theoretical results are illustrated by numerical simulations.

A NEW CLASS OF DOUBLE INTEGRALS

  • Anil, Aravind K.;Prathima, J.;Kim, Insuk
    • The Pure and Applied Mathematics
    • /
    • v.28 no.2
    • /
    • pp.111-117
    • /
    • 2021
  • In this paper we aim to establish a new class of six definite double integrals in terms of gamma functions. The results are obtained with the help of some definite integrals obtained recently by Kim and Edward equality. The results established in this paper are simple, interesting, easily established and may be useful potentially.