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ABSTRACT. This paper studies the global stability of a class of discrete-time pathogen infec-
tion models with latently infected cells. The rate of pathogens infect the susceptible cells is
taken as bilinear, saturation and general. The continuous-time models are discretized by using
nonstandard finite difference scheme. The basic and global properties of the models are estab-
lished. The global stability analysis of the equilibria is performed using Lyapunov method. The
theoretical results are illustrated by numerical simulations.

1. INTRODUCTION

Pathogen infections (such as HIV, HBV, HCV, CHIKV and HTLV, etc.) models which de-
scribe within-host dynamics have been described by system of nonlinear ordinary or delay
differential equations (see e.g. [1]-[32]). The use of digital computers in performing simula-
tions necessitated the investigation of discrete-time systems. Further, it is important to note that
scientists often collect the data and analyze the results at discrete times. For the models pre-
sented in the above mentioned papers, the exact analytical solutions are unknown. Therefore, a
discretization can be used to obtain discrete-time model which is an approximation of the exact
one. One of the very important task is to choose a discretization scheme which preserves the
properties of the corresponding continuous time model. In 1994 Mickens [33] has introduced
nonstandard finite difference (NSFD) scheme for solving differential equations. It has been
proven that NSFD can preserve the main properties of several types of continuous time mod-
els. NSFD has been used to investigate the global stability of equilibria of the corresponding
continuous time models in epidemiology [35]-[39] and virology [40]-[52].

The basic and pioneering model describing the pathogen dynamics is due Nowak and Bang-
ham [1]. The model contains three compartments: susceptible (or uninfected) cells, infected
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cells and free pathogens. A lot of considerations have been added that aim to get the best rep-
resentation of the pathogen infection. Most notable are latent pathogen reservoirs which serve
as a major barrier in curing pathogen infection. Despite the fact that the antiretroviral therapy
significantly limits the level of pathogen in the blood, there is still a low viral load due to on-
going reactivation of latent infected cells reservoirs. Variant models have been developed to
study the dynamics of pathogen in the presence of latent reservoirs (see, e.g., [17], [26]-[32]).
However, all the models presented in these papers are given by continuous-time. In this paper,
our target is to study a class of discrete time pathogen infection models with latently infected
cells. We study the qualitative behavior of the models with different forms of infection rates.
We investigate global stability of the equilibria of the models using Lyapunov method. The
theoretical results are supported by numerical simulations.

2. MODEL WITH BILINEAR INCIDENCE

We propose the following continuous pathogen infection model with latency:

ṡ = β − δs− κsp, (2.1)

ẇ = (1− ϵ)κsp− (α+m)w, (2.2)
u̇ = ϵκsp+mw − γu, (2.3)
ṗ = θu− ηp. (2.4)

where s, w ,u, and p are the concentrations of susceptible cells, latently infected cells, actively
infected cells and free pathogens, respectively. Parameters β and δ represent the birth rate and
death rate constants of the susceptible cells, respectively. Susceptible cells become infected at
rate κsp, where κ is the incidence rate constant. Parts ϵ and (1− ϵ) with 0 < ϵ < 1 of infected
cells are assumed to be latent and active, respectively. The term mw represents the activation
rate of the latently infected cells. Free pathogens are produced at rate θu. The death rate of
latently infected cells, actively infected cells and pathogen particles are given by αw, γu and
ηp,respectively.

Discretizing system (2.1)-(2.4) using NSFD method [33]-[34] we obtain

sn+1 − sn = β − δsn+1 − κsn+1pn, (2.5)

wn+1 − wn = (1− ϵ)κsn+1pn − (α+m)wn+1, (2.6)
un+1 − un = ϵκsn+1pn +mwn+1 − γun+1, (2.7)
pn+1 − pn = θun+1 − ηpn+1, (2.8)

where n ∈ N = {0, 1, 2, ...}.
We consider the initial conditions:

(s0, w0, u0, p0) ∈ R4
+ = {(s, w, u, p) | s > 0, w > 0, u > 0, p > 0}. (2.9)

2.1. Preliminaries. Let us consider the region

Γ1 = {(s, w, u, p) : 0 < s,w, u < N1, 0 < p < N2}

where N1 =
β
ξ , N2 =

2θ
γ N1 and ξ = min

{
δ, α, γ2 , η

}
.
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Lemma 2.1. Any solution (sn, wn, un, pn) of model (2.5)-(2.8) with initial conditions (2.9) is
positive and ultimately bounded.

Proof. From Eqs. (2.5)-(2.8) we obtain

sn+1 =
β + sn

1 + δ + κpn
, (2.10)

wn+1 =
wn

1 + α+m
+

(1− ϵ)κ(β + sn)pn
(1 + α+m)(1 + δ + κpn)

, (2.11)

un+1 =
un

1 + γ
+

ϵκ(β + sn)pn
(1 + γ)(1 + δ + κpn)

+
mwn

(1 + γ)(1 + α+m)

+
m(1− ϵ)κ(β + sn)pn

(1 + γ)(1 + α+m)(1 + δ + κpn)
, (2.12)

pn+1 =
pn

1 + η
+

θun
(1 + η)(1 + γ)

+
θϵκ(β + sn)pn

(1 + η)(1 + γ)(1 + δ + κpn)

+
θmwn

(1 + η)(1 + γ)(1 + α+m)
+

θm(1− ϵ)κ(β + sn)pn
(1 + η)(1 + γ)(1 + α+m)(1 + δ + κpn)

. (2.13)

Since all parameters of model (2.5)-(2.8) are positive, then by induction we get sn > 0,wn > 0,
un > 0 and pn > 0 for all n ∈ N.

To investigate the boundedness of solutions we define the following sequence Mn:

Mn = sn + wn + un +
γ

2θ
pn.

Then

Mn+1 =Mn + β − δsn+1 − αwn+1 −
γ

2
un+1 −

γη

2θ
pn+1

≤Mn + β − ξMn+1.

Hence
Mn+1 ≤

Mn

1 + ξ
+

β

1 + ξ
.

By Lemma 2.2 in [41] we have

Mn ≤
(

1

1 + ξ

)n

M0 +
β

ξ

[
1−

(
1

1 + ξ

)n]
.

Consequently, lim
n→∞

supMn ≤ N1, lim
n→∞

sup sn ≤ N1, lim
n→∞

supwn ≤ N1, lim
n→∞

supun ≤
N1 and lim

n→∞
sup pn ≤ N2. Therefore, the solution (sn, wn, un, pn) converges to Γ1 as n →

∞. �
The basic reproduction number of model (2.5)-(2.8) is given by:

R0 =
κθβ (αϵ+m)

δγη(α+m)
. (2.14)
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System (2.5)-(2.8) has two equilibria,
(i) pathogen-free equilibrium Q0(s0, 0, 0, 0) where s0 = β/δ.
(ii) persistent pathogen equilibrium Q∗(s∗, w∗, u∗, p∗), where

s∗ =
s0

R0
, w∗ =

δγη(1− ϵ)

θκ(αϵ+m)
(R0 − 1), u∗ =

δη

θκ
(R0 − 1), p∗ =

δ

κ
(R0 − 1).

Clearly, Q∗ exists only when R0 > 1.

2.2. Global Stability. We define the function G(x) ≥ 0 as G(x) = x− lnx− 1. Hence,

lnx ≤ x− 1. (2.15)

Theorem 2.2. If R0 ≤ 1, then Q0 is globally asymptotically stable.

Proof. Construct a discrete Lyapunov function Ln(sn, wn, un, pn) as:

Ln = s0G
(sn
s0

)
+

m

αϵ+m
wn +

α+m

αϵ+m
un +

γ(α+m)

θ (αϵ+m)
(1 + η)pn.

Hence, Ln > 0 for all sn > 0, wn > 0, un > 0 and pn > 0. In addition, Ln = 0 if and only if
sn = s0, wn = 0, un = 0 and pn = 0. Computing the difference ∆Ln = Ln+1 − Ln as:

∆Ln = s0G
(sn+1

s0

)
+

m

αϵ+m
wn+1 +

α+m

αϵ+m
un+1 +

γ(α+m)

θ (αϵ+m)
(1 + η)pn+1

−
[
s0G

(sn
s0

)
+

m

αϵ+m
wn +

α+m

αϵ+m
un +

γ(α+m)

θ (αϵ+m)
(1 + η)pn

]
= s0

(
sn+1

s0
− sn
s0

+ ln
sn
sn+1

)
+

m

αϵ+m
(wn+1 − wn) +

α+m

αϵ+m
(un+1 − un)

+
γ(α+m)

θ (αϵ+m)
(1 + η)(pn+1 − pn).

Using inequality (2.15), we have

∆Ln ≤ sn+1 − sn + s0
(

sn
sn+1

− 1

)
+

m

αϵ+m
(wn+1 − wn) +

α+m

αϵ+m
(un+1 − un)

+
γ(α+m)

θ (αϵ+m)
(1 + η)(pn+1 − pn)

=

(
1− s0

sn+1

)
(sn+1 − sn) +

m

αϵ+m
(wn+1 − wn) +

α+m

αϵ+m
(un+1 − un)

+
γ(α+m)

θ (αϵ+m)
(1 + η)(pn+1 − pn).
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From Eqs. (2.5)-(2.8), we have

∆Ln ≤
(
1− s0

sn+1

)
(β − δsn+1 − κsn+1pn) +

m

αϵ+m
((1− ϵ)κsn+1pn − (α+m)wn+1)

+
(α+m)

αϵ+m
(ϵκsn+1pn +mwn+1 − γun+1) +

γ(α+m)

θ (αϵ+m)
(θun+1 − ηpn+1)

+
γη(α+m)

θ (αϵ+m)
(pn+1 − pn)

=

(
1− s0

sn+1

)
(β − δsn+1) + κs0pn − γη(α+m)

θ (αϵ+m)
pn

=
−δ
sn+1

(sn+1 − s0)2 +

(
κs0 − γη(α+m)

θ (αϵ+m)

)
pn

=
−δ
sn+1

(sn+1 − s0)2 +
γη(α+m)

θ (αϵ+m)

(
κθβ (αϵ+m)

δγη(α+m)
− 1

)
pn

=
−δ
sn+1

(sn+1 − s0)2 +
γη(α+m)

θ (αϵ+m)
(R0 − 1) pn.

Hence, for R0 ≤ 1, we have ∆Ln ≤ 0 for all n ≥ 0, hence Ln is a monotone decreasing
sequence. We have Ln ≥ 0, then there is a limit lim

n→∞
Ln ≥ 0. Therefore, lim

n→∞
∆Ln = 0,

which implies that lim
n→∞

sn+1 = s0 and lim
n→∞

(R0 − 1)pn = 0. For the case R0 < 1, we

have lim
n→∞

sn+1 = s0 and lim
n→∞

pn = 0. From Eqs. (2.5)-(2.7), we obtain lim
n→∞

wn = 0 and

lim
n→∞

un = 0. For the case R0 = 1, we have lim
n→∞

sn+1 = s0. From Eqs. (2.5)-(2.7), we obtain
lim
n→∞

pn = 0, lim
n→∞

un = 0 and lim
n→∞

wn = 0. Hence, in the case R0 ≤ 1, the pathogen-free

equilibrium Q0 is globally asymptotically stable. �

Theorem 2.3. If R0 > 1, then Q∗ is globally asymptotically stable.

Proof. Define

Un(sn, wn, un, pn) = s∗G
(sn
s∗

)
+

m

αϵ+m
w∗G

(wn

w∗

)
+

α+m

αϵ+m
u∗G

(un
u∗

)
+

γ(α+m)

θ (αϵ+m)
(1 + η)p∗G

(
pn
p∗

)
.
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Clearly, Un(sn, wn, un, pn) > 0 for all sn, wn, un, pn > 0 and Un(s
∗, w∗, u∗, p∗) = 0. Com-

puting ∆Un = Un+1 − Un as:

∆Un = s∗G
(sn+1

s∗

)
+

m

αϵ+m
w∗G

(wn+1

w∗

)
+

α+m

αϵ+m
u∗G

(un+1

u∗

)
+

γ(α+m)

θ (αϵ+m)
(1 + η)p∗G

(
pn+1

p∗

)
−
[
s∗G

(sn
s∗

)
+

m

αϵ+m
w∗G

(wn

w∗

)
+

(α+m)

αϵ+m
u∗G

(un
u∗

)
+

γ(α+m)

θ (αϵ+m)
(1 + η)p∗G

(
pn
p∗

)]
= s∗

(
sn+1

s∗
− sn
s∗

+ ln
sn
sn+1

)
+

mw∗

αϵ+m

(
wn+1

w∗ − wn

w∗ + ln
wn

wn+1

)
+

(α+m)u∗

αϵ+m

(
un+1

u∗
− un
u∗

+ ln
un
un+1

)
+
γ(α+m)p∗

θ (αϵ+m)

(
pn+1

p∗
− pn
p∗

+ ln
pn
pn+1

)
+
γη(α+m)

θ (αϵ+m)
p∗
[
G

(
pn+1

p∗

)
−G

(
pn
p∗

)]
.

Using inequality (2.15), we get

∆Un ≤ s∗
(
sn+1 − sn

s∗
+

sn
sn+1

− 1

)
+

mw∗

αϵ+m

(
wn+1 − wn

w∗ +
wn

wn+1
− 1

)
+

(α+m)u∗

αϵ+m

(
un+1 − un

u∗
+

un
un+1

− 1

)
+
γ(α+m)p∗

θ (αϵ+m)

(
pn+1 − pn

p∗
+

pn
pn+1

− 1

)
+
γη(α+m)

θ (αϵ+m)
p∗
[
G

(
pn+1

p∗

)
−G

(
pn
p∗

)]
=

(
1− s∗

sn+1

)
(sn+1 − sn) +

m

αϵ+m

(
1− w∗

wn+1

)
(wn+1 − wn)

+
α+m

αϵ+m

(
1− u∗

un+1

)
(un+1 − un)

+
γ(α+m)

θ (αϵ+m)

(
1− p∗

pn+1

)
(pn+1 − pn) +

γη(α+m)

θ (αϵ+m)
p∗
[
G

(
pn+1

p∗

)
−G

(
pn
p∗

)]
.
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From Eqs. (2.5)-(2.8), we have

∆Un ≤
(
1− s∗

sn+1

)
(β − δsn+1 − κsn+1pn)

+
m

αϵ+m

(
1− w∗

wn+1

)
((1− ϵ)κsn+1pn − (α+m)wn+1)

+
α+m

αϵ+m

(
1− u∗

un+1

)
(ϵκsn+1pn +mwn+1 − γun+1)

+
γ(α+m)

θ (αϵ+m)

(
1− p∗

pn+1

)
(θun+1 − ηpn+1)

+
γη(α+m)

θ (αϵ+m)
p∗
[
G

(
pn+1

p∗

)
−G

(
pn
p∗

)]
.

Since β = δs∗ + κs∗p∗, then

∆Un ≤
(
1− s∗

sn+1

)
(δs∗ + κs∗p∗ − δsn+1 − κsn+1pn)

+
m

αϵ+m

(
1− w∗

wn+1

)
((1− ϵ)κsn+1pn − (α+m)wn+1)

+
α+m

αϵ+m

(
1− u∗

un+1

)
(ϵκsn+1pn +mwn+1 − γun+1)

+
γ(α+m)

θ (αϵ+m)

(
1− p∗

pn+1

)
(θun+1 − ηpn+1)

+
γη(α+m)

θ (αϵ+m)
p∗
[
pn+1

p∗
− pn
p∗

+ ln
pn
pn+1

]
.

= − δ

sn+1
(sn+1 − s∗)2 + κs∗p∗

(
1− s∗

sn+1

)
+ κs∗pn − mκ(1− ϵ)

αϵ+m

sn+1pnw
∗

wn+1

+
m(α+m)

αϵ+m
w∗ − ϵκ(α+m)

αϵ+m

sn+1pnu
∗

un+1
− m(α+m)

αϵ+m

u∗wn+1

un+1
+
γ(α+m)

αϵ+m
u∗

− γ(α+m)

αϵ+m

p∗un+1

pn+1
+
γη(α+m)

θ (αϵ+m)
p∗ − γη(α+m)

θ (αϵ+m)
pn +

γη(α+m)

θ (αϵ+m)
p∗ ln

pn
pn+1

.

We have

κs∗pn − γη(α+m)

θ (αϵ+m)
pn = 0.

Using the conditions of Q∗

(1− ϵ)κs∗p∗ = (α+m)w∗

ϵκs∗p∗ +mw∗ = γu∗

θu∗ = ηp∗,
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we get

m(α+m)

αϵ+m
w∗ =

m(1− ϵ)κs∗p∗

αϵ+m
,

γ(α+m)

αϵ+m
u∗ =

γη(α+m)

θ (αϵ+m)
p∗ = κs∗p∗,

κs∗p∗ =
m(1− ϵ)κs∗p∗

αϵ+m
+
ϵ(α+m)κs∗p∗

αϵ+m
,

and

∆Un ≤ −δ
sn+1

(sn+1 − s∗)2 +
m(1− ϵ)

αϵ+m
κs∗p∗

(
1− s∗

sn+1

)
+
ϵ(α+m)

αϵ+m
κs∗p∗

(
1− s∗

sn+1

)
− m(1− ϵ)

αϵ+m
κs∗p∗

sn+1pnw
∗

s∗p∗wn+1
+
m(1− ϵ)

αϵ+m
κs∗p∗ − ϵ(α+m)

αϵ+m
κs∗p∗

sn+1pnu
∗

s∗p∗un+1

− m(1− ϵ)

αϵ+m
κs∗p∗

u∗wn+1

un+1w∗ +
m(1− ϵ)

αϵ+m
κs∗p∗ +

ϵ(α+m)

αϵ+m
κs∗p∗ − m(1− ϵ)

αϵ+m
κs∗p∗

p∗un+1

pn+1u∗

− ϵ(α+m)

αϵ+m
κs∗p∗

p∗un+1

pn+1u∗
+
m(1− ϵ)

αϵ+m
κs∗p∗ +

ϵ(α+m)

αϵ+m
κs∗p∗ + κs∗p∗ ln

pn
pn+1

=
−δ
sn+1

(sn+1 − s∗)2

+
m(1− ϵ)

αϵ+m
κs∗p∗

[
4− s∗

sn+1
− sn+1pnw

∗

s∗p∗wn+1
− u∗wn+1

un+1w∗ − p∗un+1

pn+1u∗
+ ln

pn
pn+1

]
+
ϵ(α+m)

αϵ+m
κs∗p∗

[
3− s∗

sn+1
− sn+1pnu

∗

s∗p∗un+1
− p∗un+1

pn+1u∗
+ ln

pn
pn+1

]
=

−δ
sn+1

(sn+1 − s∗)2 − m(1− ϵ)

αϵ+m
κs∗p∗

[
G

(
s∗

sn+1

)
+G

(
sn+1pnw

∗

s∗p∗wn+1

)
+G

(
u∗wn+1

un+1w∗

)
+G

(
p∗un+1

pn+1u∗

)]
− ϵ(α+m)

αϵ+m
κs∗p∗

[
G

(
s∗

sn+1

)
+G

(
sn+1pnu

∗

s∗p∗un+1

)
+G

(
p∗un+1

pn+1u∗

)]
.

Thus, Un is monotone decreasing sequence. Because Un ≥ 0, there is a limit lim
n→∞

Un ≥ 0.

Therefore, lim
n→∞

∆Un = 0, which implies lim
n→∞

sn = s∗, lim
n→∞

wn = w∗, lim
n→∞

un = u∗ and
lim
n→∞

pn = p∗. �

3. MODEL WITH SATURATED INCIDENCE

It has been reported in [15]-[16] that pathogen dynamics model with saturated incidence is
more accurate in case of high concentration of the pathogens. Thus we consider the following
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model:

ṡ = β − δs− κsp

1 + µp
, (3.1)

ẇ =
(1− ϵ)κsp

1 + µp
− (α+m)w, (3.2)

u̇ =
ϵκsp

1 + µp
+mw − γu, (3.3)

ṗ = θu− ηp. (3.4)

where µ is the saturation constant. Using the NSFD method we obtain

sn+1 − sn = β − δsn+1 −
κsn+1pn
1 + µpn

, (3.5)

wn+1 − wn =
(1− ϵ)κsn+1pn

1 + µpn
− (α+m)wn+1, (3.6)

un+1 − un =
ϵκsn+1pn
1 + µpn

+mwn+1 − γun+1, (3.7)

pn+1 − pn = θun+1 − ηpn+1. (3.8)

3.1. Preliminaries.

Lemma 3.1. Any solution (sn, wn, un, pn) of model (3.5)-(3.8) with intial conditions (2.9) is
positive and ultimately bounded.

Proof. From Eqs. (3.5)-(3.8) we obtain

sn+1 =
(β + sn)(1 + µpn)

1 + δ + (µ(1 + δ) + κ)pn
, (3.9)

wn+1 =
wn

1 + α+m
+

(1− ϵ)κpn(β + sn)

(1 + α+m) (1 + δ + (µ(1 + δ) + κ)pn)
, (3.10)

un+1 =
un

1 + γ
+

ϵκpn(β + sn)

(1 + γ) (1 + δ + (µ(1 + δ) + κ)pn)
+

mwn

(1 + γ) (1 + α+m)

+
m(1− ϵ)κpn(β + sn)

(1 + γ)(1 + α+m) (1 + δ + (µ(1 + δ) + κ)pn)
, (3.11)

pn+1 =
pn

1 + η
+

θun
(1 + η)(1 + γ)

+
θϵκpn(β + sn)

(1 + η)(1 + γ) (1 + δ + (µ(1 + δ) + κ)pn)

+
θmwn

(1 + η)(1 + γ) (1 + α+m)
+

θm(1− ϵ)κpn(β + sn)

(1 + η) (1 + γ)(1 + α+m) (1 + δ + (µ(1 + δ) + κ)pn)
.

(3.12)

The solution of (3.5)-(3.8) with initial (2.9) satisfies sn > 0, wn > 0, un > 0 and pn > 0 . The
boundedness of solutions of model (3.5)-(3.8) is similar to the proof of Lemma 2.1. �
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System (3.5)-(3.8) has two equilibria
(i) pathogen-free equilibrium Q0(s0, 0, 0, 0) where s0 = β/δ.
(ii) persistent pathogen equilibrium Q∗(s∗, w∗, u∗, p∗), where

s∗ =
γη(α+m) + βθµ (αϵ+m)

θ (αϵ+m) (µδ + κ)
, w∗ =

δγη(1− ϵ)

θ(µδ + κ) (αϵ+m)
(R0 − 1),

u∗ =
δη

θ(µδ + κ)
(R0 − 1), p∗ =

δ

(µδ + κ)
(R0 − 1),

where R0 is given by Eq. (2.14)

3.2. Global Stability.

Theorem 3.2. Suppose that R0 ≤ 1, then Q0 is globally asymptotically stable.

Proof. Construct a Lyapunov function Ln as:

Ln(sn, wn, un, pn) = s0G
(sn
s0

)
+

m

αϵ+m
wn +

α+m

αϵ+m
un +

γ(α+m)

θ (αϵ+m)
(1 + η)pn.

Hence, Ln ≥ 0 for all sn > 0, wn > 0, un > 0 and pn > 0. In addition, Ln = 0 if and only if
sn = s0, wn = 0, un = 0 and pn = 0. Computing the difference ∆Ln = Ln+1 − Ln as:

∆Ln = s0G
(sn+1

s0

)
+

m

αϵ+m
wn+1 +

α+m

αϵ+m
un+1 +

γ(α+m)

θ (αϵ+m)
(1 + η)pn+1

−
[
s0G

(sn
s0

)
+

m

αϵ+m
wn +

α+m

αϵ+m
un +

γ(α+m)

θ (αϵ+m)
(1 + η)pn

]
= s0

(
sn+1

s0
− sn
s0

+ ln
sn
s+1

)
+

m

αϵ+m
(wn+1 − wn) +

α+m

αϵ+m
(un+1 − un)

+
γ(α+m)

θ (αϵ+m)
(1 + η) (pn+1 − pn) .

Using inequality (2.15), we have

∆Ln ≤ sn+1 − sn + s0
(

sn
sn+1

− 1

)
+

m

αϵ+m
(wn+1 − wn) +

α+m

αϵ+m
(un+1 − un)

+
γ(α+m)

θ (αϵ+m)
(1 + η)(pn+1 − pn)

=

(
1− s0

sn+1

)
(sn+1 − sn) +

m

αϵ+m
(wn+1 − wn) +

α+m

αϵ+m
(un+1 − un)

+
γ(α+m)

θ (αϵ+m)
(1 + η)(pn+1 − pn).
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From Eqs. (3.5)-(3.8), we have

∆Ln ≤
(
1− s0

sn+1

)(
β − δsn+1 −

κsn+1pn
1 + µpn

)
+

m

αϵ+m

(
(1− ϵ)κsn+1pn

1 + µpn
− (α+m)wn+1

)
+

α+m

αϵ+m

(
ϵκsn+1pn
1 + µpn

+mwn+1 − γun+1

)
+

γ(α+m)

θ (αϵ+m)
(θun+1 − ηpn+1)

+
γη(α+m)

θ (αϵ+m)
(pn+1 − pn)

=

(
1− s0

sn+1

)
(β − δsn+1) +

κs0pn
1 + µpn

− γη(α+m)

θ (αϵ+m)
pn

=
−δ
sn+1

(sn+1 − s0)2 +
γη(α+m)

θ (αϵ+m)

(
κθβ (αϵ+m)

δγη(α+m)(1 + µpn)
− 1

)
pn

=
−δ
sn+1

(sn+1 − s0)2 +
γη(α+m)

θ (αϵ+m)

(
R0

1 + µpn
− 1

)
pn

=
−δ
sn+1

(sn+1 − s0)2 − γη(α+m)

θ (αϵ+m)

µR0

(1 + µpn)
p2n +

γη(α+m)

θ (αϵ+m)
(R0 − 1) pn.

Hence, for R0 ≤ 1, we have ∆Ln ≤ 0 for all n ≥ 0. Hence, Ln is a monotone decreasing
sequence. The proof can be completed similar to that of Theorem 2.2.

�

Theorem 3.3. If R0 > 1, then Q∗ is globally asymptotically stable.

Proof. Let us consider

Un(sn, wn, un, pn) = s∗G
(sn
s∗

)
+

m

αϵ+m
w∗G

(wn

w∗

)
+

α+m

αϵ+m
u∗G

(un
u∗

)
+

γ(α+m)

θ (αϵ+m)
(1 + η)p∗G

(
pn
p∗

)
.
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Clearly, Un(sn, wn, un, pn) > 0 for all sn, wn, un, pn > 0 and Un(s
∗, w∗, u∗, p∗) = 0.

Computing ∆Un = Un+1 − Un as:

∆Un = s∗G
(sn+1

s∗

)
+

m

αϵ+m
w∗G

(wn+1

w∗

)
+

α+m

αϵ+m
u∗G

(un+1

u∗

)
+

γ(α+m)

θ (αϵ+m)
(1 + η)p∗G

(
pn+1

p∗

)
−
[
s∗G

(sn
s∗

)
+

m

αϵ+m
w∗G

(wn

w∗

)
+

α+m

αϵ+m
u∗G

(un
u∗

)
+

γ(α+m)

θ (αϵ+m)
(1 + η)p∗G

(
pn
p∗

)]
= s∗

(
sn+1

s∗
− sn
s∗

+ ln
sn
sn+1

)
+

m

αϵ+m
w∗
(
wn+1

w∗ − wn

w∗ + ln
wn

wn+1

)
+

α+m

αϵ+m
u∗
(
un+1

u∗
− un
u∗

+ ln
un
un+1

)
+

γ(α+m)

θ (αϵ+m)
p∗
(
pn+1

p∗
− pn
p∗

+ ln
pn
pn+1

)
+
γη(α+m)

θ (αϵ+m)
p∗
[
G

(
pn+1

p∗

)
−G

(
pn
p∗

)]
.

Using inequality (2.15), we get

∆Un ≤ s∗
(
sn+1 − sn

s∗
+

sn
sn+1

− 1

)
+

m

αϵ+m
w∗
(
wn+1 − wn

w∗ +
wn

wn+1
− 1

)
+

α+m

αϵ+m
u∗
(
un+1 − un

u∗
+

un
un+1

− 1

)
+

γ(α+m)

θ (αϵ+m)
p∗
(
pn+1 − pn

p∗
+

pn
pn+1

− 1

)
+
γη(α+m)

θ (αϵ+m)
p∗
[
G

(
pn+1

p∗

)
−G

(
pn
p∗

)]
=

(
1− s∗

sn+1

)
(sn+1 − sn) +

m

αϵ+m

(
1− w∗

wn+1

)
(wn+1 − wn)

+
α+m

αϵ+m

(
1− u∗

un+1

)
(un+1 − un) +

γ(α+m)

θ (αϵ+m)

(
1− p∗

pn+1

)
(pn+1 − pn)

+
γη(α+m)

θ (αϵ+m)
p∗
[
G

(
pn+1

p∗

)
−G

(
pn
p∗

)]
.
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From Eqs. (3.5)-(3.8), we have

∆Un ≤
(
1− s∗

sn+1

)(
β − δsn+1 −

κsn+1pn
1 + µpn

)
+

m

αϵ+m

(
1− w∗

wn+1

)(
(1− ϵ)κsn+1pn

1 + µpn
− (α+m)wn+1

)
+

α+m

αϵ+m

(
1− u∗

un+1

)(
ϵκsn+1pn
1 + µpn

+mwn+1 − γun+1

)
+

γ(α+m)

θ (αϵ+m)

(
1− p∗

pn+1

)
(θun+1 − ηpn+1) +

γη(α+m)

θ (αϵ+m)
p∗
(
pn+1

p∗
− pn
p∗

+ ln
pn
pn+1

)
=

(
1− s∗

sn+1

)
(β − δsn+1) +

κs∗pn
1 + µpn

− m(1− ϵ)

αϵ+m

κsn+1pnw
∗

(1 + µpn)wn+1
+
m(α+m)

αϵ+m
w∗

− ϵ(α+m)

αϵ+m

κsn+1pnu
∗

(1 + µpn)un+1
− m(α+m)

αϵ+m

wn+1u
∗

un+1
+
γ(α+m)

αϵ+m
u∗ − γ(α+m)

αϵ+m

p∗un+1

pn+1

+
γη(α+m)

θ (αϵ+m)
p∗ +

γη(α+m)

θ (αϵ+m)
p∗
(
−pn
p∗

+ ln
pn
pn+1

)
.

Using the conditions of Q∗

β = δs∗ +
κs∗p∗

1 + µp∗
,

(1− ϵ)κs∗p∗

1 + µp∗
= (α+m)w∗,

ϵκs∗p∗

1 + µp∗
+mw∗ = γu∗,

θu∗ = ηp∗,

we get

m(α+m)

αϵ+m
w∗ =

m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗

γ(α+m)

αϵ+m
u∗ =

γη(α+m)

θ (αϵ+m)
p∗ =

κs∗p∗

1 + µp∗

κs∗p∗

1 + µp∗
=
m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗
+
ϵ(α+m)

αϵ+m

κs∗p∗

1 + µp∗
,
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and

∆Un ≤ −δ
sn+1

(sn+1 − s∗)2 +
κs∗p∗

1 + µpn

(
1− s∗

sn+1

)
+

κs∗p∗

1 + µp∗
pn (1 + µp∗)

p∗ (1 + µpn)

− m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗
sn+1pnw

∗ (1 + µp∗)

s∗p∗wn+1 (1 + µpn)
+
m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗

− ϵ(α+m)

αϵ+m

κs∗p∗

1 + µp∗
sn+1pnu

∗ (1 + µp∗)

s∗p∗un+1 (1 + µpn)
− m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗
u∗wn+1

un+1w∗

+
κs∗p∗

1 + µp∗
− κs∗p∗

1 + µp∗
un+1p

∗

u∗pn+1
+

κs∗p∗

1 + µp∗
+

κs∗p∗

1 + µp∗

(
−pn
p∗

+ ln
pn
pn+1

)
=

−δ
sn+1

(sn+1 − s∗)2 +
m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗

(
1− s∗

sn+1

)
+
ϵ(α+m)

αϵ+m

κs∗p∗

1 + µp∗

(
1− s∗

sn+1

)
− m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗
sn+1pnw

∗ (1 + µp∗)

s∗p∗wn+1 (1 + µpn)
+
m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗

− ϵ(α+m)

αϵ+m

κs∗p∗

1 + µp∗
sn+1pnu

∗ (1 + µp∗)

s∗p∗un+1 (1 + µpn)
− m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗
u∗wn+1

un+1w∗

+
m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗
+
ϵ(α+m)

αϵ+m

κs∗p∗

1 + µp∗
− m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗
un+1p

∗

u∗pn+1

− ϵ(α+m)

αϵ+m

κs∗p∗

1 + µp∗
un+1p

∗

u∗pn+1
+
m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗
+
ϵ(α+m)

αϵ+m

κs∗p∗

1 + µp∗

+
κs∗p∗

1 + µp∗

(
−pn
p∗

+ ln
pn
pn+1

+
pn (1 + µp∗)

p∗ (1 + µpn)

)
=

−δ
sn+1

(sn+1 − s∗)2 +
m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗

[
5− s∗

sn+1
− sn+1pnw

∗ (1 + µp∗)

s∗p∗wn+1 (1 + µpn)
− u∗wn+1

un+1w∗

−un+1p
∗

u∗pn+1
− 1 + µpn

1 + µp∗
+ ln

pn
pn+1

]
+
ϵ(α+m)

αϵ+m

κs∗p∗

1 + µp∗

[
4− s∗

sn+1
− sn+1pnu

∗ (1 + µp∗)

s∗p∗un+1 (1 + µpn)

−un+1p
∗

u∗pn+1
− 1 + µpn

1 + µp∗
+ ln

pn
pn+1

]
+

κs∗p∗

1 + µp∗

(
−1− pn

p∗
+
pn (1 + µp∗)

p∗ (1 + µpn)
+

1 + µpn
1 + µp∗

)
.

We have

−1− pn
p∗

+
pn (1 + µp∗)

p∗ (1 + µpn)
+

1 + µpn
1 + µp∗

= − µ(pn − p∗)2

p∗(1 + µpn)(1 + µp∗)
.
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Then

∆Un ≤ −δ
sn+1

(sn+1 − s∗)2

− m(1− ϵ)

αϵ+m

κs∗p∗

1 + µp∗

[
G

(
s∗

sn+1

)
+G

(
sn+1pnw

∗

s∗p∗wn+1

1 + µp∗

1 + µpn

)
+G

(
u∗wn+1

un+1w∗

)
+G

(
un+1p

∗

u∗pn+1

)
+G

(
1 + µpn
1 + µp∗

)]
− ϵ(α+m)

αϵ+m

κs∗p∗

1 + µp∗

[
G

(
s∗

sn+1

)
+G

(
sn+1pnu

∗

s∗p∗un+1

1 + µp∗

1 + µpn

)
+G

(
un+1p

∗

u∗pn+1

)
+G

(
1 + µpn
1 + µp∗

)]
− κs∗p∗

1 + µp∗
µ(pn − p∗)2

p∗(1 + µpn)(1 + µp∗)
.

Thus, Un is monotone decreasing sequence. Since Un ≥ 0, then there is a limit lim
n→∞

Un ≥ 0

and henece, lim
n→∞

∆Un = 0, which implies that lim
n→∞

sn = s∗, lim
n→∞

wn = w∗, lim
n→∞

un = u∗

and lim
n→∞

pn = p∗. �

4. MODEL WITH GENERAL INCIDENCE

In the literature, several forms of the incidence rate have been considered see e.g. [17]-[25].
In this section, we assume that the incidence rate is given by K(s, p)p, where K is a general
function.

ṡ = β − δs−K(s, p)p, (4.1)

ẇ = (1− ϵ)K(s, p)p− (α+m)w, (4.2)

u̇ = ϵK(s, p)p+mw − γu, (4.3)
ṗ = θu− ηp. (4.4)

Using NSFD method we get

sn+1 − sn = β − δsn+1 −K(sn+1, pn)pn, (4.5)

wn+1 − wn = (1− ϵ)K(sn+1, pn)pn − (α+m)wn+1, (4.6)

un+1 − un = ϵK(sn+1, pn)pn +mwn+1 − γun+1, (4.7)
pn+1 − pn = θun+1 − ηpn+1. (4.8)

4.1. Preliminaries. The function K(s, p) is assumed to satisfy the following conditions:
(A1) K(s, p) > 0, for all s > 0, p > 0, and K(0, p) = 0 for all p ≥ 0,
(A2) ∂K(s,p)

∂s > 0 for all s > 0 and p ≥ 0,

(A3) ∂K(s,p)
∂p ≤ 0 for all s ≥ 0 and p ≥ 0.
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Lemma 4.1. Any solution (sn, wn, un, pn) of model (4.5)-(4.8) with initial conditions (2.9) is
positive and converges on Γ1 as n→ ∞, and Γ1 is positive invariable for model (4.5)-(4.8).

Proof. From Eqs. (4.6)-(4.8) we obtain

wn+1 =
wn + (1− ϵ)K(sn+1, pn)pn

(1 + α+m)
, (4.9)

un+1 =
un + ϵK(sn+1, pn)pn +mwn+1

1 + γ
, (4.10)

pn+1 =
pn + θun+1

1 + η
. (4.11)

When n = 0 we prove that (s1, w1, u1, p1) exists and is positive. From Eq. (4.5) we have

(1 + δ) s1 − s0 − β +K(s1, p0)p0 = 0.

Let

φ(s1) = (1 + δ) s1 − s0 − β +K(s1, p0)p0 = 0

φ(0) = −s0 − β < 0

lim
s1→∞

φ(s1) = ∞.

From Assumption (A2), φ is a strictly increasing function in s1. Hence, there exists a unique
s1 > 0 such that φ(s1) = 0. From Eqs. (4.9)-(4.11) we have w1 > 0, u1 > 0 and p1 > 0.
Therefore, by using the induction, we obtain sn > 0, wn > 0, un > 0 and pn > 0 for all
n ≥ 0. The boundedness of solutions can be shown similar to Lemma 2.1. �

Lemma 4.2. For model (4.5)-(4.8) let (A1)-(A2) hold true, then there exists a threshold param-
eter R0 > 0 such that
(i) if R0 ≤ 1, then there exists only pathogen-free equilibrium Q0,
(ii) if R0 > 1, then there exist two equilibria, Q0 and a persistent pathogen equilibrium Q∗.

Proof. Let Q (s, w, u, p) be any equilibrium of model (4.5)-(4.8) satisfying

β − δs−K(s, p)p = 0, (4.12)

(1− ϵ)K(s, p)p− (α+m)w = 0, (4.13)

ϵK(s, p)p+mw − γu = 0, (4.14)
θu− ηp = 0. (4.15)

From Eqs. (4.12)-(4.14) we have

w =
(1− ϵ)K(s, p)p

(α+m)
, u =

(αϵ+m)K(s, p)p

γ(α+m)
, K(s, p)p = β − δs. (4.16)
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Substituting from Eq. (4.16) into Eq. (4.15) we get

θ (αϵ+m)

γ(α+m)
K(s, p)p− ηp = 0. (4.17)

From Eq. (4.16) we get

s = s0 − γη(α+m)

δθ (αϵ+m)
p.

Eq. (4.17) has two possible solutions p = 0 or p ̸= 0. If p = 0, then from Eqs. (4.12)-(4.14),
we get s = s0, w = 0 and u = 0 which gives the pathogen-free equilibrium Q0(s0, 0, 0, 0)

where s0 = β
δ . If p ̸= 0, then we have

θ (αϵ+m)

γ(α+m)
K

(
s0 − γη(α+m)

δθ (αϵ+m)
p, p

)
p− ηp = 0.

Let

ψ(p) =
θ (αϵ+m)

γ(α+m)
K

(
s0 − γη(α+m)

δθ (αϵ+m)
p, p

)
p− ηp = 0.

We have ψ(0) = 0, and ψ(p̄) = −ηp̄ < 0 where p̄ = s0δθ(αϵ+m)
γη(α+m) . Moreover

ψ′(0) =
θ (αϵ+m)

γ(α+m)
K
(
s0, 0

)
− η

= η

[
θ (αϵ+m)

γη(α+m)
K
(
s0, 0

)
− 1

]
.

Therefore, ψ′(0) > 0 if
θ (αϵ+m)

γη(α+m)
K
(
s0, 0

)
> 1. (4.18)

It follows that, if condition (4.18) is satisfied, then there exist p∗ ∈ (0, p̄) such that ψ(p∗) = 0.
Hence, the basic reproduction number of system (4.5)-(4.8) can be defined as:

R0 =
θ (αϵ+m)

γη(α+m)
K
(
s0, 0

)
.

Moreover, let p = p∗ in Eq. (4.12) we get

β − δs−K(s, p∗)p∗ = 0.

Let us define

ψ1(s) = β − δs−K(s, p∗)p∗.

We have ψ1(0) = β > 0 and ψ1(s
0) = −K(s0, p∗)p∗ < 0. SinceK (s, p) is strictly increasing

with respect to s, then ψ1(s) is strictly decreasibg with respect to s. Hence, there exists a unique
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s∗ ∈ (0, s0) such that ψ1(s
∗) = 0. From Eq. (4.16) and Assumption (A1) we have

w∗ =
(1− ϵ)K(s∗, p∗)p∗

(α+m)
> 0,

u∗ =
ϵK(s∗, p∗)p∗ +mw∗

γ
> 0.

This shows that if R0 > 1, then there exists a persistent-pathogen equilibriumQ∗ (s∗, w∗, u∗, p∗).
�

4.2. Global stability.

Lemma 4.3. [40] Let s̄, p̄ and σ be three positive real numbers and Q̄(s̄, w̄, ū, p̄) be any equi-
librium point. The function Ψ(Q̄,σ) defined on interval [0,∞) by

Ψ(Q̄,σ)(s) = s− σ −
∫ s

σ

K(s̄, p̄)

K(τ, p̄)
dτ

has the global minimum at s = s̄ and satisfies(
1− K(s̄, p̄)

K(σ, p̄)

)
(s− σ) ≤ Ψ(Q̄,σ)(s) ≤

(
1− K(s̄, p̄)

K(s, p̄)

)
(s− σ), for all s > 0. (4.19)

Theorem 4.4. Suppose that R0 ≤ 1, then Q0 of system (4.5)-(4.8) is globally asymptotically
stable.

Proof. Construct a Lyapunov function Ln as:

Ln = Ψ(Q0,s0)(sn) +
m

αϵ+m
wn +

α+m

αϵ+m
un +

γ(α+m)

θ (αϵ+m)
(1 + η)pn.

From Lemma 4.3, we obtain Ψ(Q0,s0)(sn) ≥ 0. Hence, Ln > 0 for all sn, wn, un, pn > 0 and
Ln = 0 if and only if sn = s0, wn = 0, un = 0 and pn = 0. Computing the difference
∆Ln = Ln+1 − Ln as:

∆Ln = Ψ(Q0,s0)(sn+1) +
m

αϵ+m
wn+1 +

α+m

αϵ+m
un+1 +

γ(α+m)

θ (αϵ+m)
(1 + η)pn+1

−
[
Ψ(Q0,s0)(sn) +

m

αϵ+m
wn +

α+m

αϵ+m
un +

γ(α+m)

θ (αϵ+m)
(1 + η)pn

]
= sn+1 − sn −

∫ sn+1

sn

K(s0, 0)

K(τ, 0)
dτ +

m

αϵ+m
(wn+1 − wn) +

α+m

αϵ+m
(un+1 − un)

+
γ(α+m)

θ (αϵ+m)
(1 + η)(pn+1 − pn)

= Ψ(Q0,sn)(sn+1) +
m

αϵ+m
(wn+1 − wn) +

α+m

αϵ+m
(un+1 − un)

+
γ(α+m)

θ (αϵ+m)
(1 + η)(pn+1 − pn).
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Using Lemma 4.3, we can get

∆Ln ≤
(
1− K(s0, 0)

K(sn+1, 0)

)
(sn+1 − sn) +

m

αϵ+m
(wn+1 − wn) +

α+m

αϵ+m
(un+1 − un)

+
γ(α+m)

θ (αϵ+m)
(1 + η)(pn+1 − pn).

From Eqs. (4.5)-(4.8), we have

∆Ln ≤
(
1− K(s0, 0)

K(sn+1, 0)

)
(β − δsn+1 −K(sn+1, pn)pn) (4.20)

+
m

αϵ+m
((1− ϵ)K(sn+1, pn)pn − (α+m)wn+1)

+
α+m

αϵ+m
(ϵK(sn+1, pn)pn +mwn+1 − γun+1) +

γ(α+m)

θ (αϵ+m)
(θun+1 − ηpn+1)

+
γη(α+m)

θ (αϵ+m)
(pn+1 − pn). (4.21)

Collecting terms of Eq. (4.21) and using s0 = β
δ , we obtain

∆Ln ≤
(
1− K(s0, 0)

K(sn+1, 0)

)
(β − δsn+1) +

K(s0, 0)

K(sn+1, 0)
K(sn+1, pn)pn − γη(α+m)

θ (αϵ+m)
pn

= δ

(
1− K(s0, 0)

K(sn+1, 0)

)(
s0 − sn+1

)
+
γη(α+m)

θ (αϵ+m)

(
θ (αϵ+m)

γη(α+m)
K(s0, 0)

K(sn+1, pn)

K(sn+1, 0)
− 1

)
pn

= δs0
(
1− K(s0, 0)

K(sn+1, 0)

)(
1− sn+1

s0

)
+
γη(α+m)

θ (αϵ+m)

(
K(sn+1, pn)

K(sn+1, 0)
R0 − 1

)
pn.

Since K(s, p) is decreasing with respect to p, then K(sn+1, pn) ≤ K(sn+1, 0). Thus

∆Ln ≤ δs0
(
1− K(s0, 0)

K(sn+1, 0)

)(
1− sn+1

s0

)
+
γη(α+m)

θ (αϵ+m)
(R0 − 1) pn.

Because K(s, p) is strictly increasing with respect to s, we have(
1− K(s0, 0)

K(sn+1, 0)

)(
1− sn+1

s0

)
≤ 0.

Hence, if R0 ≤ 1,we have ∆Ln ≤ 0 for all n ≥ 0.Obviously, ∆Ln = 0 if and only if sn = s0

and (R0 − 1)pn = 0. We discuss two cases:
• If R0 < 1, then lim

n→∞
pn = 0. then we get lim

n→∞
wn = 0 and lim

n→∞
un = 0.

• If R0 = 1. By using lim
n→∞

sn = s0 and from Eq. (4.5), we obtain lim
n→∞

K(s0, pn)pn = 0.

Because s0 > 0, we have K(s0, pn) > K(0, pn) = 0 (use Assumptions (A1) and (A2)). Thus,
pn = 0.
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By the aforementioned discussion, we deduce that the largest compact invariant set in
{(sn, wn, un, pn)|∆Ln = 0} is the just the singleton Q0. Therefore, Q0 is globally asymptoti-
cally stable by the LaSalle’s invariance principle [53]. �

To establish the global stability of the persistent pathogen equilibrium Q∗ we require the
following condition

(A4)
(
1− K(s, p)

K(s, p∗)

)(
K(s, p∗)

K(s, p)
− p

p∗

)
≤ 0, for all s, p > 0.

Theorem 4.5. Suppose that R0 > 1, then Q∗ of system (4.5)-(4.8) is globally asymptotically
stable.

Proof. Consider

Un(sn, wn, un, pn) = Ψ(Q∗,s∗)(sn) +
m

αϵ+m
w∗G

(wn

w∗

)
+

α+m

αϵ+m
u∗G

(un
u∗

)
+

γ(α+m)

θ (αϵ+m)
(1 + η)p∗G

(
pn
p∗

)
.

By Lemma 4.3, we get Ψ(Q∗,s∗)(sn) ≥ 0.Clearly,Un(sn, wn, un, pn) > 0 for all sn, wn, un, pn >
0 and Un(s

∗, w∗, u∗, p∗) = 0. Computing ∆Un = Un+1 − Un as:

∆Un = Ψ(Q∗,s∗)(sn+1) +
m

αϵ+m
w∗G

(wn+1

w∗

)
+

α+m

αϵ+m
u∗G

(un+1

u∗

)
+

γ(α+m)

θ (αϵ+m)
(1 + η)p∗G

(
pn+1

p∗

)
−
[
Ψ(Q∗,s∗)(sn) +

m

αϵ+m
w∗G

(wn

w∗

)
+

α+m

αϵ+m
u∗G

(un
u∗

)
+

γ(α+m)

θ (αϵ+m)
(1 + η)p∗G

(
pn
p∗

)]
= sn+1 − sn −

∫ sn+1

sn

K(s∗, p∗)

K(τ, p∗)
dτ +

m

αϵ+m
w∗
[
G
(wn+1

w∗

)
−G

(wn

w∗

)]
+

α+m

αϵ+m
u∗
[
G
(un+1

u∗

)
−G

(un
u∗

)]
+

γ(α+m)

θ (αϵ+m)
(1 + η)p∗

[
G

(
pn+1

p∗

)
−G

(
pn
p∗

)]
= Ψ(Q∗,sn)(sn+1) +

mw∗

αϵ+m

(
wn+1

w∗ − wn

w∗ + ln
wn

wn+1

)
+

(α+m)u∗

αϵ+m

(
un+1

u∗
− un
u∗

+ ln
un
un+1

)
+
γ(α+m)p∗

θ (αϵ+m)

(
pn+1

p∗
− pn
p∗

+ ln
pn
pn+1

)
+
γη(α+m)

θ (αϵ+m)
p∗
[
G

(
pn+1

p∗

)
−G

(
pn
p∗

)]
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From inequality (4.19), we have

∆Un ≤
(
1− K(s∗, p∗)

K(sn+1, p∗)

)
(sn+1 − sn) +

m

αϵ+m

(
wn+1 − wn + w∗ ln

wn

wn+1

)
+

(α+m)

αϵ+m

(
un+1 − un + u∗ ln

un
un+1

)
+

γ(α+m)

θ (αϵ+m)

(
pn+1 − pn + p∗ ln

pn
pn+1

)
+
γη(α+m)

θ (αϵ+m)
p∗
[
G

(
pn+1

p∗

)
−G

(
pn
p∗

)]
.

Using inequality (2.15), we obtain

∆Un ≤
(
1− K(s∗, p∗)

K(sn+1, p∗)

)
(sn+1 − sn) +

m

αϵ+m

(
wn+1 − wn + w∗

(
wn

wn+1
− 1

))
+

α+m

αϵ+m

(
un+1 − un + u∗

(
un
un+1

− 1

))
+

γ(α+m)

θ (αϵ+m)

(
pn+1 − pn + p∗

(
pn
pn+1

− 1

))
+
γη(α+m)

θ (αϵ+m)
p∗
[
G

(
pn+1

p∗

)
−G

(
pn
p∗

)]
=

(
1− K(s∗, p∗)

K(sn+1, p∗)

)
(sn+1 − sn) +

m

αϵ+m

(
1− w∗

wn+1

)
(wn+1 − wn)

+
α+m

αϵ+m

(
1− u∗

un+1

)
(un+1 − un) +

γ(α+m)

θ (αϵ+m)

(
1− p∗

pn+1

)
(pn+1 − pn)

+
γη(α+m)

θ (αϵ+m)
p∗
[
pn+1

p∗
− pn
p∗

+ ln
pn
pn+1

]
.
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From Eqs. (4.5)-(4.8), we have

∆Un ≤
(
1− K(s∗, p∗)

K(sn+1, p∗)

)
(β − δsn+1 −K(sn+1, pn)pn)

+
m

αϵ+m

(
1− w∗

wn+1

)
((1− ϵ)K(sn+1, pn)pn − (α+m)wn+1)

+
α+m

αϵ+m

(
1− u∗

un+1

)
(ϵK(sn+1, pn)pn +mwn+1 − γun+1)

+
γ(α+m)

θ (αϵ+m)

(
1− p∗

pn+1

)
(θun+1 − ηpn+1) +

γη(α+m)

θ (αϵ+m)
p∗
(
pn+1

p∗
− pn
p∗

+ ln
pn
pn+1

)
=

(
1− K(s∗, p∗)

K(sn+1, p∗)

)
(β − δsn+1) +

K(s∗, p∗)

K(sn+1, p∗)
K(sn+1, pn)pn

− m(1− ϵ)

αϵ+m

w∗

wn+1
K(sn+1, pn)pn +

m(α+m)

αϵ+m
w∗ − ϵ(α+m)

αϵ+m

u∗

un+1
K(sn+1, pn)pn

− m(α+m)

αϵ+m

u∗

un+1
wn+1 +

γ(α+m)

αϵ+m
u∗ − γ(α+m)

αϵ+m

p∗

pn+1
un+1 +

γη(α+m)

θ (αϵ+m)
p∗

+
γη(α+m)

θ (αϵ+m)
p∗
[
−pn
p∗

+ ln
pn
pn+1

]
.

Using the conditions of Q∗

β = δs∗ +K(s∗, p∗)p∗,

(1− ϵ)K(s∗, p∗)p∗ = (α+m)w∗,

ϵK(s∗, p∗)p∗ +mw∗ = γu∗,

θu∗ = ηp∗,

we get

m(α+m)

αϵ+m
w∗ =

m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗,

γ(α+m)

αϵ+m
u∗ =

γη(α+m)

θ (αϵ+m)
p∗ = K(s∗, p∗)p∗,

K(s∗, p∗)p∗ =
m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗ +

ϵ(α+m)

αϵ+m
K(s∗, p∗)p∗,
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and

∆Un ≤ δs∗
(
1− K(s∗, p∗)

K(sn+1, p∗)

)(
1− sn+1

s∗

)
+K(s∗, p∗)p∗

(
1− K(s∗, p∗)

K(sn+1, p∗)

)
+K(s∗, p∗)p∗

K(sn+1, pn)pn
K(sn+1, p∗)p∗

− m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗

K(sn+1, pn)pn
K(s∗, p∗)p∗

w∗

wn+1

+
m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗ − ϵ(α+m)

αϵ+m
K(s∗, p∗)p∗

K(sn+1, pn)pn
K(s∗, p∗)p∗

u∗

un+1

− m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗

u∗wn+1

un+1w∗ +K(s∗, p∗)p∗ −K(s∗, p∗)p∗
p∗un+1

pn+1u∗

+K(s∗, p∗)p∗ +K(s∗, p∗)p∗
[
−pn
p∗

+ ln
pn
pn+1

]
= δs∗

(
1− K(s∗, p∗)

K(sn+1, p∗)

)(
1− sn+1

s∗

)
+
m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗

(
1− K(s∗, p∗)

K(sn+1, p∗)

)
+
ϵ(α+m)

αϵ+m
K(s∗, p∗)p∗

(
1− K(s∗, p∗)

K(sn+1, p∗)

)
− m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗

K(sn+1, pn)pn
K(s∗, p∗)p∗

w∗

wn+1

+
m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗ − ϵ(α+m)

αϵ+m
K(s∗, p∗)p∗

K(sn+1, pn)pn
K(s∗, p∗)p∗

u∗

un+1

− m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗

u∗wn+1

un+1w∗ +
m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗ +

ϵ(α+m)

αϵ+m
K(s∗, p∗)p∗

− m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗

p∗un+1

pn+1u∗
− ϵ(α+m)

αϵ+m
K(s∗, p∗)p∗

p∗un+1

pn+1u∗

+
m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗ +

ϵ(α+m)

αϵ+m
K(s∗, p∗)p∗

+K(s∗, p∗)p∗
[
−pn
p∗

+ ln
pn
pn+1

+
K(sn+1, pn)pn
K(sn+1, p∗)p∗

]
,
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∆Un ≤ δs∗
(
1− K(s∗, p∗)

K(sn+1, p∗)

)(
1− sn+1

s∗

)
+
m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗

[
5− K(sn+1, pn)pn

K(s∗, p∗)p∗
w∗

wn+1
− u∗wn+1

un+1w∗

−p
∗un+1

pn+1u∗
− K(s∗, p∗)

K(sn+1, p∗)
− K(sn+1, p

∗)

K(sn+1, pn)
+ ln

pn
pn+1

]
+
ϵ(α+m)

αϵ+m
K(s∗, p∗)

× p∗
[
4− K(sn+1, pn)pn

K(s∗, p∗)p∗
u∗

un+1
− p∗un+1

pn+1u∗
− K(s∗, p∗)

K(sn+1, p∗)
− K(sn+1, p

∗)

K(sn+1, pn)
+ ln

pn
pn+1

]
+K(s∗, p∗)p∗

(
−1− pn

p∗
+
K(sn+1, pn)

K(sn+1, p∗)

pn
p∗

+
K(sn+1, p

∗)

K(sn+1, pn)

)
= δs∗

(
1− K(s∗, p∗)

K(sn+1, p∗)

)(
1− sn+1

s∗

)
− m(1− ϵ)

αϵ+m
K(s∗, p∗)p∗

[
G

(
K(sn+1, pn)pn
K(s∗, p∗)p∗

w∗

wn+1

)
+G

(
u∗wn+1

un+1w∗

)
+G

(
p∗un+1

pn+1u∗

)
+G

(
K(s∗, p∗)

K(sn+1, p∗)

)
+G

(
K(sn+1, p

∗)

K(sn+1, pn)

)]
− ϵ(α+m)

αϵ+m
K(s∗, p∗)p∗

[
G

(
K(sn+1, pn)pn
K(s∗, p∗)p∗

u∗

un+1

)
+G

(
p∗un+1

pn+1u∗

)
+G

(
K(s∗, p∗)

K(sn+1, p∗)

)
+G

(
K(sn+1, p

∗)

K(sn+1, pn)

)]
+K(s∗, p∗)p∗

(
−1− pn

p∗
+
K(sn+1, pn)

K(sn+1, p∗)

pn
p∗

+
K(sn+1, p

∗)

K(sn+1, pn)

)
Because K(s, p) is strictly increasing function with respect to s, we obtain that(

1− K(s∗, p∗)

K(sn+1, p∗)

)(
1− sn+1

s∗

)
≤ 0.

Based on the assumption (A4), we have

−1−pn
p∗

+
K(sn+1, pn)pn
K(sn+1, p∗)p∗

+
K(sn+1, p

∗)

K(sn+1, pn)
=

(
1− K(sn+1, pn)

K(sn+1, p∗)

)(
K(sn+1, p

∗)

K(sn+1, pn)
− pn
p∗

)
≤ 0.

Thus, Un is monotone decreasing sequence. Because Un ≥ 0, there is a limit lim
n→∞

Un ≥ 0.
Therefore, lim

n→∞
∆Un = 0, which implies that lim

n→∞
sn = s∗, lim

n→∞
wn = w∗, lim

n→∞
un = u∗ and

lim
n→∞

pn = p∗.

�

5. NUMERICAL SIMULATIONS

We perform our simulation by choosing

K(s, p) =
κs

1 + λs
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where λ > 0 is the holling-type II infection rate constant. Therefore, system (4.5)-(4.8) be-
comes

sn+1 − sn = β − δsn+1 −
κsn+1pn
1 + λsn+1

, (5.1)

wn+1 − wn =
(1− ϵ)κsn+1pn

1 + λsn+1
− (α+m)wn+1, (5.2)

un+1 − un =
ϵκsn+1pn
1 + λsn+1

+mwn+1 − γun+1, (5.3)

pn+1 − pn = θun+1 − ηpn+1. (5.4)

For this system, the basic reproduction number is given by

R0 =
θκβ (αϵ+m)

γη (α+m) (δ + λβ)
.

We verify the assumptions (A1)-(A4)

K(s, p) =
κs

1 + λs
> 0, for all s > 0, p > 0, and K(0, p) = 0 for all p ≥ 0,

∂K(s, p)

∂s
=

κ

(1 + λs)2
> 0 for all s > 0, and p ≥ 0,

∂K(s, p)

∂p
= 0 for all s ≥ 0, and p ≥ 0,

(
1− K(s, p)

K(s, p∗)

)(
K(s, p∗)

K(s, p)
− p

p∗

)
= 0.

Then, function K(s, p) satisfies Assumptions (A1)-(A4) and hence Theorems 4.4 and 4.5 are
applicable for such function.

The numerical simulations for system (5.1)-(5.4) will be conducted using the following data:
β = 10, δ = 0.1, α = 0.4, m = 0.1, γ = 0.2, θ = 1 and η = 1. The other parameters will be
chosen bellow.

Let us consider the initial values
IV1: s(0) = 800, w(0) = 20, u(0) = 60, p(0) = 80,
IV2: s(0) = 600, w(0) = 15, u(0) = 40, p(0) = 40 ,
IV3: s(0) = 400, w(0) = 10, u(0) = 20, p(0) = 20 and
IV4: s(0) = 600, w(0) = 2, u(0) = 15, p(0) = 15.
Case(I) Effect of κ of stability of steady states:
We choose ϵ = 0.5, λ = 0.0005 and κ is varied as:
(i) κ = 0.0001. This yields R0 = 0.2000 < 1. Figures 1-4 show that, the concentration of

susceptible cells increases and tends to the value s0 = 1000. In addition, the concentrations of
latently infected cells, actively infected cells and free pathogen decrease and tend to zero for
the initial values IV1-IV3. This shows that Q0 is globally asymptotically stable and Theorem
4.4 is valid.
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(ii) κ = 0.001. With this value we obtain R0 = 2.0000 > 1. Figures 1-4 show that
for the initial values IV1-IV3, the solutions of the system tend to the equilibrium Q∗ =
(400.0135, 6.0036, 18.0104, 18.0103). Therefore, Q∗ exists and it is globally asymptotically
stable. This validate the result of Theorem 4.5.
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FIGURE 1. The simulation of susceptible cells of system (5.1)-(5.4) for Case(I).
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FIGURE 2. The simulation of latently infected cells of system (5.1)-(5.4) for Case(I).
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FIGURE 3. The simulation of actively infected cells of system (5.1)-(5.4) for Case(I).
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FIGURE 4. The simulation of pathogens of system (5.1)-(5.4) for Case(I).

Case(II) Effect of the Holling type II on the pathogen dynamics:
For this case, we take IV4 and choose the values ϵ = 0.5, κ = 0.001. Figures 5-8 and Table

1 show the effect of Holling-type II parameter λ on the stability of the system. We observe that,
as λ is increased, the pathogen-to-susceptible and infected-to-susceptible transmission rates are
decreased. Then, the concentration of the susceptible cells are increased, while the concentra-
tions of the latently infected cells, actively infected cells and free pathogens are decreased. In
addition
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(i) if λ < 0.002, then Q∗ exists and it is globally asymptotically stable,
(ii) if λ ≥ 0.002, then Q0 exists and it is globally asymptotically stable.
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FIGURE 5. The simulation of susceptible cells of system (5.1)-(5.4) for Case(II).
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FIGURE 6. The simulation of latently infected cells of system (5.1)-(5.4) for Case(II).
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FIGURE 7. The simulation of actively infected cells of system (5.1)-(5.4) for Case(II).
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FIGURE 8. The simulation of pathogens of system (5.1)-(5.4) for Case(II).
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Case(III) Effect of latency on the dynamical behavior of the system:
In this case, we show the HIV dynamics for different values of ϵ, the fraction of uninfected

cells that become latently infected cells. We take κ = 0.0006, λ = 0.0005 and the initial
conditions IV4. Figures 9-12 show the effect of ϵ on the evolution of system states. When
ϵ increases, it is observed an increase in the concentration of the latently infected cells. This
means that the reservoirs of these cells are enlarged, which promotes an increase in the amount
of virus that escapes treatment [55]. Subsequently, after activation of the latently infected
cells, new HIV will be produced and released into the blood stream [56]. Using the values of
the parameters given in Table 1 we have the following:

(i) if 0.0 < ϵ < 0.3750, then R0 ≤ 1 and Q0 exists and is globally asymptotically stable,
(ii) if ϵ ≥ 0.3750, then R0 > 1 and Q∗ exists and is globally asymptotically stable.
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FIGURE 9. The simulation of susceptible cells of system (5.1)-(5.4) for Case(III).
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FIGURE 10. The simulation of latently infected cells of system (5.1)-(5.4) for Case(III).
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FIGURE 11. The simulation of actively infected cells of system (5.1)-(5.4) for Case(III).
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FIGURE 12. The simulation of pathogens of system (5.1)-(5.4) for Case(III).

Table 1 shows that as λ is increased the values of R0 are decreased.

TABLE 1. The values of R0 for system (5.1)-(5.4) with different values of λ.

λ Equilibria R0

0.0005 Q∗ 2
0.001 Q∗ 1.5000
0.0015 Q∗ 1.2000
0.002 Q0 1
0.003 Q0 0.7500
0.004 Q0 0.6000

6. CONCLUSION

In this paper, we have proposed and analyzed three discrete-time pathogen infection models
with different incidence rate. We have considered two types of infected cells, latently infected
cells and actively infected cells. We have discretized the continuous-time models by nonstan-
dard finite difference scheme. We have determined the basic reproduction number R0. We have
proven the positivity and boundedness of the models’s solutions. Using Lyapunov method, we
have established the global stability of the two equilibria of the models. We have proven that
if R0 ≤ 1, then the pathogen-free equilibrium Q0 is globally asymptotically stable and if
R0 > 1, then the persistent pathogen equilibrium Q∗ exists and is globally asymptotically
stable. We have performed some numerical simulations to support our theoretical results.
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