• Title/Summary/Keyword: mathematical reasoning ability

Search Result 79, Processing Time 0.026 seconds

Analysis of Inductive Reasoning Process (귀납적 추론의 과정 분석)

  • Lee, Sung-Keun;Ryu, Heui-Su
    • School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.85-107
    • /
    • 2012
  • Problem solving is important in school mathematics as the means and end of mathematics education. In elementary school, inductive reasoning is closely linked to problem solving. The purpose of this study was to examine ways of improving problem solving ability through analysis of inductive reasoning process. After the process of inductive reasoning in problem solving was analyzed, five different stages of inductive reasoning were selected. It's assumed that the flow of inductive reasoning would begin with stage 0 and then go on to the higher stages step by step, and diverse sorts of additional inductive reasoning flow were selected depending on what students would do in case of finding counter examples to a regulation found by them or to their inference. And then a case study was implemented after four elementary school students who were in their sixth grade were selected in order to check the appropriateness of the stages and flows of inductive reasoning selected in this study, and how to teach inductive reasoning and what to teach to improve problem solving ability in terms of questioning and advising, the creation of student-centered class culture and representation were discussed to map out lesson plans. The conclusion of the study and the implications of the conclusion were as follows: First, a change of teacher roles is required in problem-solving education. Teachers should provide students with a wide variety of problem-solving strategies, serve as facilitators of their thinking and give many chances for them ide splore the given problems on their own. And they should be careful entegieto take considerations on the level of each student's understanding, the changes of their thinking during problem-solving process and their response. Second, elementary schools also should provide more intensive education on justification, and one of the best teaching methods will be by taking generic examples. Third, a student-centered classroom should be created to further the class participation of students and encourage them to explore without any restrictions. Fourth, inductive reasoning should be viewed as a crucial means to boost mathematical creativity.

  • PDF

Development and application of program for mathematically gifted students based on mathematical modeling : focused on Voronoi diagram and Delaunay triangulation (영재교육을 위한 수학적 모델링 프로그램의 개발 및 적용 :보로노이 다이어그램과 들로네 삼각분할을 중심으로)

  • Yu, Hong-Gyu;Yun, Jong-Gug
    • Communications of Mathematical Education
    • /
    • v.31 no.3
    • /
    • pp.257-277
    • /
    • 2017
  • The purpose of this research is divide into two kinds. First, develop the mathematical modeling program for mathematically gifted students focused on Voronoi diagram and Delaunay triangulation, and then gifted teachers can use it in the class. Voronoi diagram and Delaunay triangulation are Spatial partition theory use in engineering and geography field and improve gifted student's mathematical connections, problem solving competency and reasoning ability. Second, after applying the developed program to the class, I analyze gifted student's core competency. Applying the mathematical modeling program, the following findings were given. First, Voronoi diagram and Delaunay triangulation are received attention recently and suitable subject for mathematics gifted education. Second,, in third enrichment course(Student's Centered Mathematical Modeling Activity), gifted students conduct the problem presentation, division of roles, select and collect the information, draw conclusions by discussion. In process of achievement, high level mathematical competency and intellectual capacity are needed so synthetic thinking ability, problem solving, creativity and self-directed learning ability are appeared to gifted students. Third, in third enrichment course(Student's Centered Mathematical Modeling Activity), problem solving, mathematical connections, information processing competency are appeared.

An Investigation of Mathematically High Achieving Students' Understanding of Statistical Concepts (수학 우수아의 통계적 개념 이해도 조사)

  • Lee, Kyeong-Hwa;Yoo, Yun-Joo;Hong, Jin-Kon;Park, Min-Sun;Park, Mi-Mi
    • School Mathematics
    • /
    • v.12 no.4
    • /
    • pp.547-561
    • /
    • 2010
  • Even though statistics is considered as one of the areas of mathematical science in the school curriculum, it has been well documented that statistics has distinct features compared to mathematics. However, there is little empirical educational research showing distinct features of statistics, especially research into the understanding of statistical concepts which are different from other areas in school mathematics. In addition, there is little discussion of a relationship between the ability of mathematical thinking and the ability of understanding statistical concepts. This study extracted some important concepts which consist of the fundamental statistical reasoning and investigated how mathematically high achieving students understood these concepts. As a result, there were both kinds of concepts that mathematically high achieving students developed well or not. There is a weak correlation between mathematical ability and the level of understanding statistical concepts.

  • PDF

The Visualization of figures represented by parameters (매개변수로 표현되는 도형의 시각화 방안)

  • 김향숙
    • The Mathematical Education
    • /
    • v.40 no.2
    • /
    • pp.317-333
    • /
    • 2001
  • The equations of figures given by rectangular coordinates are used to look into the properties of them, which are very restricted in examining them in the school mathematics. Therefore, it is quite natural to consider the figures in terms of parameters without restriction to coordinates and also, it is possible for the students to analyze them. Thus, the visualization of figures is important for students in mathematics education. In particular, the teaching-learning methods using computers make loose the difficulties of geometry education, and from the viewpoint that various abstract figures can be visualized and that can be obtained by means of this visualization the learning of figures can be accomplished through the direct experience or control. This study is intended to present concretely the aim and its utility to visualize figures represented as parameters with Mathematics. In this paper, we introduce a new teaching-learning method of figures represented by parameters using Mathematica so that the learners establish themselves their knowledge obtained through their search, investigation, supposition and they accomplish the positive transition to advanced learning. So the leasers extend their ability of sensuous intuition to their ability of logical reasoning through their logical intuition. Consequently they can develop the ability of thinking mathematically, so many natural phenomena and physical ones.

  • PDF

Math Creative Problem Solving Ability Test for Identification of the Mathematically Gifted

  • Cho Seok-Hee;Hwang Dong-Jou
    • Research in Mathematical Education
    • /
    • v.10 no.1 s.25
    • /
    • pp.55-70
    • /
    • 2006
  • The purpose of this study was to develop math creative problem solving test in order to identify the mathematically gifted on the basis of their math creative problem solving ability and evaluate the goodness of the test in terms of its reliability and validity of measuring creativity in math problem solving on the basis of fluency in producing valid solutions. Ten open math problems were developed requiring math thinking abilities such as intuitive insight, organization of information, inductive and deductive reasoning, generalization and application, and reflective thinking. The 10 open math test items were administered to 2,029 Grade 5 students who were recommended by their teachers as candidates for gifted education programs. Fluency, the number of valid solutions, in each problem was scored by math teachers. Their responses were analyzed by BIGSTEPTS based on Rasch's 1-parameter item-response model. The item analyses revealed that the problems were good in reliability, validity, difficulty, and discrimination power even when creativity was scored with the single criteria of fluency. This also confirmed that the open problems which are less-defined, less-structured and non-entrenched were good in measuring math creativity of the candidates for math gifted education programs. In addition, it discriminated applicants for two different gifted educational institutions and between male and female students as well.

  • PDF

A Comparison of Mathematically Gifted and Non-gifted Elementary Fifth Grade Students Based on Probability Judgments (초등학교 5학년 수학영재와 일반아의 확률판단 비교)

  • Choi, Byoung-Hoon;Lee, Kyung-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.2
    • /
    • pp.179-199
    • /
    • 2007
  • The purpose of this study was to discover differences between mathematically gifted students (MGS) and non-gifted students (NGS) when making probability judgments. For this purpose, the following research questions were selected: 1. How do MGS differ from NGS when making probability judgments(answer correctness, answer confidence)? 2. When tackling probability problems, what effect do differences in probability judgment factors have? To solve these research questions, this study employed a survey and interview type investigation. A probability test program was developed to investigate the first research question, and the second research question was addressed by interviews regarding the Program. Analysis of collected data revealed the following results. First, both MGS and NGS justified their answers using six probability judgment factors: mathematical knowledge, use of logical reasoning, experience, phenomenon of chance, intuition, and problem understanding ability. Second, MGS produced more correct answers than NGS, and MGS also had higher confidence that answers were right. Third, in case of MGS, mathematical knowledge and logical reasoning usage were the main factors of probability judgment, but the main factors for NGS were use of logical reasoning, phenomenon of chance and intuition. From findings the following conclusions were obtained. First, MGS employ different factors from NGS when making probability judgments. This suggests that MGS may be more intellectual than NGS, because MGS could easily adopt probability subject matter, something not learnt until later in school, into their mathematical schemata. Second, probability learning could be taught earlier than the current elementary curriculum requires. Lastly, NGS need reassurance from educators that they can understand and accumulate mathematical reasoning.

  • PDF

Development and application of mathematical activities for gifted students (수학 영재교육 자료의 개발과 적용 사례 연구)

  • 이경화
    • Journal of Educational Research in Mathematics
    • /
    • v.13 no.3
    • /
    • pp.365-382
    • /
    • 2003
  • This study intends to develope and apply mathematical activities for gifted students. According to the Polya's research and Krutetskii's study, mathematical activities were developed and observed. The activities were aimed at discovery of Euler's theorem through exploration of soccer ball at first. After the repeated application and reflection, the aim and the main activities were changed to the exploration of soccer ball itself and about related mathematical facts. All the students actively participated in the activities, proposed questions need to be proved, disproved by counter examples during the fourth program. Also observation, conjectures, inductive arguments played a prominent role.

  • PDF

A Historical, Mathematical, Psychological Analysis on Ratio Concept (비 개념에 대한 역사적, 수학적, 심리적 분석)

  • 정은실
    • School Mathematics
    • /
    • v.5 no.4
    • /
    • pp.421-440
    • /
    • 2003
  • It is difficult for the learner to understand completely the ratio concept which forms a basis of proportional reasoning. And proportional reasoning is, on the one hand, the capstone of children's elementary school arithmetic and, the other hand, it is the cornerstone of all that is to follow. But school mathematics has centered on the teachings of algorithm without dealing with its essence and meaning. The purpose of this study is to analyze the essence of ratio concept from multidimensional viewpoint. In addition, this study will show the direction for improvement of ratio concept. For this purpose, I tried to analyze the historical development of ratio concept. Most mathematicians today consider ratio as fraction and, in effect, identify ratios with what mathematicians called the denominations of ratios. But Euclid did not. In line with Euclid's theory, ratio should not have been represented in the same way as fraction, and proportion should not have been represented as equation, but in line with the other's theory they might be. The two theories of ratios were running alongside each other, but the differences between them were not always clearly stated. Ratio can be interpreted as a function of an ordered pair of numbers or magnitude values. A ratio is a numerical expression of how much there is of one quantity in relation to another quantity. So ratio can be interpreted as a binary vector which differentiates between the absolute aspect of a vector -its size- and the comparative aspect-its slope. Analysis on ratio concept shows that its basic structure implies 'proportionality' and it is formalized through transmission from the understanding of the invariance of internal ratio to the understanding of constancy of external ratio. In the study, a fittingness(or comparison) and a covariation were examined as the intuitive origins of proportion and proportional reasoning. These form the basis of the protoquantitative knowledge. The development of sequences of proportional reasoning was examined. The first attempts at quantifying the relationships are usually additive reasoning. Additive reasoning appears as a precursor to proportional reasoning. Preproportions are followed by logical proportions which refer to the understanding of the logical relationships between the four terms of a proportion. Even though developmental psychologists often speak of proportional reasoning as though it were a global ability, other psychologists insist that the evolution of proportional reasoning is characterized by a gradual increase in local competence.

  • PDF

How to develop the ability of proof methods?

  • Behnoodi, Maryam;Takahashi, Tadashi
    • Research in Mathematical Education
    • /
    • v.13 no.3
    • /
    • pp.217-233
    • /
    • 2009
  • The purpose of this study is to describe how dynamic geometry systems can be useful in proof activity; teaching sequences based on the use of dynamic geometry systems and to analyze the possible roles of dynamic geometry systems in both teaching and learning of proof. And also dynamic geometry environments can generate powerful interplay between empirical explorations and formal proofs. The point of this study was to show that how using dynamic geometry software can provide an opportunity to link between empirical and deductive reasoning, and how such software can be utilized to gain insight into a deductive argument.

  • PDF

An Analysis of Elementary School Students' Informal Knowledge In Proportion (초등학생의 비례에 관한 비형식적 지식 분석)

  • Park, Sang-Eun;Lee, Dae-Hyun;Rim, Hae-Kyung
    • Communications of Mathematical Education
    • /
    • v.24 no.2
    • /
    • pp.345-363
    • /
    • 2010
  • The purpose of this study is to investigate and analyze informal knowledge of students who do not learn the conception of proportion and to identify how the informal knowledge can be used for teaching the conception of proportion in order to present an effective method of teaching the conception. For doing this, proportion was classified into direct and inverse proportion, and 'What are the informal knowledge of students?' were researched. The subjects of this study were 117 sixth-graders who did not have prior learning on direct and inverse proportion. A total eleven problems including seven for direct proportion and four for inverse proportion, all of them related to daily life. The result are as follows; Even though students didn't learn about proportion, they solve the problems of proportion using informal knowledge such as multiplicative reasoning, proportion reasoning, single-unit strategy etc. This result implies mathematics education emphasizes student's informal knowledge for improving their mathematical ability.