It tends to be emphasized that mathematics is the important discipline to develop students' mathematical reasoning abilities such as deduction, induction, analogy, and visual reasoning. This study is aimed for investigating the present state about mathematical reasoning in secondary school. We survey teachers' opinions and analyze the results. The results are analyzed by frequency analysis including percentile, t-test, and MANOVA. Results are the following: 1. Teachers recognized mathematics as knowledge constructed by deduction, induction, analogy and visual reasoning, and evaluated their reasoning abilities high. 2. Teachers indicated the importances of reasoning in curriculum, the necessities and the representations, but there are significant difference in practices comparing to the former importances. 3. To evaluate mathematical reasoning, teachers stated that they needed items and rubric for assessment of reasoning. And at present, they are lacked. 4. The hindrances in teaching mathematical reasoning are the lack of method for appliance to mathematics instruction, the unpreparedness of proposals for evaluation method, and the lack of whole teachers' recognition for the importance of mathematical reasoning
This paper offers an analysis of how students reasoned with the dynamic parameter time to support their mathematical activity and deepen their understandings of mathematical concepts. This mathematical thinking occurred as they participated in a differential equations class before, during, and instruction on solutions to linear systems of differential equations. Students participated in the following identified mathematical practices related to parametric reasoning during this time period: reasoning simultaneously in a qualitative and quantitative manner, reasoning by moving from discrete to continuous imaging of time, and reasoning by imagining the motion. Examples of this reasoning are provided in this report. Implications of this research include the possibility that instructional activities can build on this reasoning to help students learn about the mathematics of change at the middle school, high school, and the university.
The purpose of this study is to investigate the relationships among affective characteristics, mathematical problem-solving abilities, and reasoning abilities of the 6th graders for mathematics, and to analyze whether the relationships have any differences according to the regions, which the subjects live. The results are as follows: First, self-awareness is the most important factor which is related mathematical problem-solving abilities and reasoning abilities, and learning habit and deductive reasoning ability have the most strong relationships. Second, for the relationships between problem-solving abilities and reasoning abilities, inductive reasoning ability is more related to problem-solving ability than deductive reasoning ability Third, for the regions, there is a significant difference between mathematical abilities and deductive reasoning abilities of the subjects.
Journal of Elementary Mathematics Education in Korea
/
v.20
no.1
/
pp.105-129
/
2016
The elements of mathematical processes include mathematical reasoning, mathematical problem-solving, and mathematical communications. Proportion reasoning is a kind of mathematical reasoning which is closely related to the ratio and percent concepts. Proportion reasoning is the essence of primary mathematics, and a basic mathematical concept required for the following more-complicated concepts. Therefore, the study aims to analyze the proportion reasoning ability of sixth graders of primary school who have already learned the ratio and percent concepts. To allow teachers to quickly recognize and help students who have difficulty solving a proportion reasoning problem, this study analyzed the characteristics and patterns of proportion reasoning of sixth graders of primary school. The purpose of this study is to provide implications for learning and teaching of future proportion reasoning of higher levels. In order to solve these study tasks, proportion reasoning problems were developed, and a total of 22 sixth graders of primary school were asked to solve these questions for a total of twice, once before and after they learned the ratio and percent concepts included in the 2009 revised mathematical curricula. Students' strategies and levels of proportional reasoning were analyzed by setting up the four different sections and classifying and analyzing the patterns of correct and wrong answers to the questions of each section. The results are followings; First, the 6th graders of primary school were able to utilize various proportion reasoning strategies depending on the conditions and patterns of mathematical assignments given to them. Second, most of the sixth graders of primary school remained at three levels of multiplicative reasoning. The most frequently adopted strategies by these sixth graders were the fraction strategy, the between-comparison strategy, and the within-comparison strategy. Third, the sixth graders of primary school often showed difficulty doing relative comparison. Fourth, the sixth graders of primary school placed the greatest concentration on the numbers given in the mathematical questions.
The study tries to differentiate the levels of mathematical reasoning from inductive reasoning to formal reasoning for teaching gradually. Because the formal point of view without the relation to objects has limitations in the creation of a new knowledge, our mathematics education needs consider the such characteristics. We propose an intuitive level of proof related in concrete operations and perceptual experiences as an intermediating step between inductive and formal reasoning. The key activity of the intuitive level is having insight on the generality of reasoning. The details of the process should pursuit the direction for going away from objects and near to formal reasoning. We need teach the mathematical reasoning gradually according to the appropriate level of reasoning more differentiated.
Research shows that formative assessment has a more powerful effect on student learning than summative assessment. This case study of an 8th grade algebra classroom focuses on how the implementation of Formative Assessment Lessons (FALs) and the participation in teacher learning communities related to FALs changed in the teacher's instructional practices, over the course of a year, to promote students' mathematical reasoning and justification. Two classroom observations are analyzed to identify how the teacher elicited and built on students' mathematical reasoning, and how the teacher prompted students to respond to and develop one another's mathematical ideas. Findings show that the teacher solicited students' reasoning more often as the academic year progressed, and students also began developing mathematical reasoning in meaningful ways, such as articulating their mathematical thinking, responding to other students' reasoning, and building on those ideas leading by the teacher. However, findings also show that teacher change in teaching practices is complicated and intertwined with various dimensions of teacher development. This study contributes to the understanding of changes in teaching practices, which has significant implications for teacher professional development and frameworks for investigating teacher learning.
The purpose of the study is to analyze the levels of cognitive demands and components of the reasoning process presented in the mathematical sequence section of three high school mathematics textbooks in order to provide implications for the development of reasoning tasks in the future mathematics textbooks. The results of the study have revealed that most of the reasoning tasks presented in the mathematical sequence section of the three high school mathematics textbooks seemed to require low-level cognitive demands and that low-level cognitive demands reasoning tasks required only a component of one reasoning process. On the other hand, only a portion of the reasoning tasks appeared to require high-level of cognitive demands, and high-level cognitive demands reasoning tasks required various components of reasoning process. Considering the results of the study, it seems to suggest that we need more high-level cognitive demands reasoning tasks to develop high-level cognitive reasoning that would provide students with learning opportunities for various processes of reasoning, and that would provide a deeper understanding of the nature of reasoning.
Journal of Elementary Mathematics Education in Korea
/
v.15
no.3
/
pp.619-640
/
2011
The study aims the introducing the items for the assessment of mathematical thinking including mathematical reasoning, problem solving, and communication and the analyzing on the responses of the 5th grade pupils. We categorized the area of mathematical reasoning into deductive reasoning, inductive reasoning, and analogy; problem solving into external problem solving and internal one; and communication into speaking, reading, writing, and listening. And we proposed the examples of our items for each area and the 5th grade pupils' responses. When we assess on pupil's mathematical reasoning, we need to develop very appropriate items needing the very ability of each kind of mathematical reasoning. When pupils solve items requesting communication, the impact of the form of each communication seem to be smaller than that of the mathematical situation or sturucture of the item. We suggested that we need to continue the studies on mathematical assessment and on the constitution and utilization of cognitive areas, and we also need to in-service teacher education on the development of mathematical assessments, based on this study.
The purpose of this study is to measure the differences in affective characteristics and mathematical reasoning ability between gifted students and non-gifted students. This study compares and analyzes on the relations between the affective characteristics and mathematical reasoning ability. The study subjects are comprised of 97 gifted fifth grade students and 144 non-gifted fifth grade students. The criterion is based on the questionnaire of the affective characteristics and mathematical reasoning ability. To analyze the data, t-test and multiple regression analysis were adopted. The conclusions of the study are synthetically summarized as follows. First, the mathematically gifted students show a positive response to subelement of the affective characteristics, self-conception, attitude, interest, study habits. As a result of analysis of correlation between the affective characteristic and mathematical reasoning ability, the study found a positive correlation between self-conception, attitude, interest, study habits but a negative correlation with mathematical anxieties. Therefore the more an affective characteristics are positive, the higher the mathematical reasoning ability are built. These results show the mathematically gifted students should be educated to be positive and self-confident. Second, the mathematically gifted students was influenced with mathematical anxieties to mathematical reasoning ability. Therefore we seek for solution to reduce mathematical anxieties to improve to the mathematical reasoning ability. Third, the non-gifted students that are influenced of interest of the affective characteristics will improve mathematical reasoning ability, if we make the methods to be interested math curriculum.
Goos(2004) introduced educational researchers' demand for change on the way that mathematics is taught in schools and the series of curriculum documents produced by the National council of Teachers of Mathematics. The documents have placed emphasis on the processes of problem solving, reasoning, and communication. In Korea, the national curriculum documents have also placed increased emphasis on mathematical activities such as reasoning and communication(1997, 2007).The purpose of this study is to analyze the impact of inquiry-oriented instruction with guided reinvention on students' mathematical activities containing communication and reasoning for science high school students. In this paper, we introduce an inquiry-oriented instruction containing Polya's plausible reasoning, Freudenthal's guided reinvention, Forman's sociocultural approach of learning, and Vygotsky's zone of proximal development. We analyze the impact of mathematical findings from inquiry-oriented instruction on students' mathematical activities containing communication and reasoning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.