• Title/Summary/Keyword: mathematical reasoning

Search Result 302, Processing Time 0.018 seconds

Investigation of Present State about Mathematical Reasoning in Secondary School -Focused on Types of Mathematical Reasoning- (학교 현장에서 수학적 추론에 대한 실태 조사 -수학적 추론 유형 중심으로-)

  • 이종희;김선희
    • The Mathematical Education
    • /
    • v.41 no.3
    • /
    • pp.273-289
    • /
    • 2002
  • It tends to be emphasized that mathematics is the important discipline to develop students' mathematical reasoning abilities such as deduction, induction, analogy, and visual reasoning. This study is aimed for investigating the present state about mathematical reasoning in secondary school. We survey teachers' opinions and analyze the results. The results are analyzed by frequency analysis including percentile, t-test, and MANOVA. Results are the following: 1. Teachers recognized mathematics as knowledge constructed by deduction, induction, analogy and visual reasoning, and evaluated their reasoning abilities high. 2. Teachers indicated the importances of reasoning in curriculum, the necessities and the representations, but there are significant difference in practices comparing to the former importances. 3. To evaluate mathematical reasoning, teachers stated that they needed items and rubric for assessment of reasoning. And at present, they are lacked. 4. The hindrances in teaching mathematical reasoning are the lack of method for appliance to mathematics instruction, the unpreparedness of proposals for evaluation method, and the lack of whole teachers' recognition for the importance of mathematical reasoning

  • PDF

Using parametric reasoning to understand solutions to systems of differential equations

  • Allen, Karen
    • Communications of Mathematical Education
    • /
    • v.18 no.2 s.19
    • /
    • pp.79-92
    • /
    • 2004
  • This paper offers an analysis of how students reasoned with the dynamic parameter time to support their mathematical activity and deepen their understandings of mathematical concepts. This mathematical thinking occurred as they participated in a differential equations class before, during, and instruction on solutions to linear systems of differential equations. Students participated in the following identified mathematical practices related to parametric reasoning during this time period: reasoning simultaneously in a qualitative and quantitative manner, reasoning by moving from discrete to continuous imaging of time, and reasoning by imagining the motion. Examples of this reasoning are provided in this report. Implications of this research include the possibility that instructional activities can build on this reasoning to help students learn about the mathematics of change at the middle school, high school, and the university.

  • PDF

A Study on Correlations among Affective Characteristics, Mathematical Problem-Solving, and Reasoning Ability of 6th Graders in Elementary School (초등학교 고학년 아동의 정의적 특성, 수학적 문제 해결력, 추론 능력간의 관계)

  • 이영주;전평국
    • Education of Primary School Mathematics
    • /
    • v.2 no.2
    • /
    • pp.113-131
    • /
    • 1998
  • The purpose of this study is to investigate the relationships among affective characteristics, mathematical problem-solving abilities, and reasoning abilities of the 6th graders for mathematics, and to analyze whether the relationships have any differences according to the regions, which the subjects live. The results are as follows: First, self-awareness is the most important factor which is related mathematical problem-solving abilities and reasoning abilities, and learning habit and deductive reasoning ability have the most strong relationships. Second, for the relationships between problem-solving abilities and reasoning abilities, inductive reasoning ability is more related to problem-solving ability than deductive reasoning ability Third, for the regions, there is a significant difference between mathematical abilities and deductive reasoning abilities of the subjects.

  • PDF

An Analysis on the Proportional Reasoning Understanding of 6th Graders of Elementary School -focusing to 'comparison' situations- (초등학교 6학년 학생들의 비례 추론 능력 분석 -'비교' 상황을 중심으로-)

  • Park, Ji Yeon;Kim, Sung Joon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.1
    • /
    • pp.105-129
    • /
    • 2016
  • The elements of mathematical processes include mathematical reasoning, mathematical problem-solving, and mathematical communications. Proportion reasoning is a kind of mathematical reasoning which is closely related to the ratio and percent concepts. Proportion reasoning is the essence of primary mathematics, and a basic mathematical concept required for the following more-complicated concepts. Therefore, the study aims to analyze the proportion reasoning ability of sixth graders of primary school who have already learned the ratio and percent concepts. To allow teachers to quickly recognize and help students who have difficulty solving a proportion reasoning problem, this study analyzed the characteristics and patterns of proportion reasoning of sixth graders of primary school. The purpose of this study is to provide implications for learning and teaching of future proportion reasoning of higher levels. In order to solve these study tasks, proportion reasoning problems were developed, and a total of 22 sixth graders of primary school were asked to solve these questions for a total of twice, once before and after they learned the ratio and percent concepts included in the 2009 revised mathematical curricula. Students' strategies and levels of proportional reasoning were analyzed by setting up the four different sections and classifying and analyzing the patterns of correct and wrong answers to the questions of each section. The results are followings; First, the 6th graders of primary school were able to utilize various proportion reasoning strategies depending on the conditions and patterns of mathematical assignments given to them. Second, most of the sixth graders of primary school remained at three levels of multiplicative reasoning. The most frequently adopted strategies by these sixth graders were the fraction strategy, the between-comparison strategy, and the within-comparison strategy. Third, the sixth graders of primary school often showed difficulty doing relative comparison. Fourth, the sixth graders of primary school placed the greatest concentration on the numbers given in the mathematical questions.

The Levels of the Teaching of Mathematical Reasoning on the Viewpoint of Mathematical Forms and Objects (수학의 형식과 대상에 따른 수학적 추론 지도 수준)

  • Seo Dong-Yeop
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.2
    • /
    • pp.95-113
    • /
    • 2006
  • The study tries to differentiate the levels of mathematical reasoning from inductive reasoning to formal reasoning for teaching gradually. Because the formal point of view without the relation to objects has limitations in the creation of a new knowledge, our mathematics education needs consider the such characteristics. We propose an intuitive level of proof related in concrete operations and perceptual experiences as an intermediating step between inductive and formal reasoning. The key activity of the intuitive level is having insight on the generality of reasoning. The details of the process should pursuit the direction for going away from objects and near to formal reasoning. We need teach the mathematical reasoning gradually according to the appropriate level of reasoning more differentiated.

  • PDF

Teacher Change in Teaching Practices Towards Developing Students' Reasoning in Mathematics

  • Kim, Hee-Jeong
    • Research in Mathematical Education
    • /
    • v.18 no.3
    • /
    • pp.223-234
    • /
    • 2014
  • Research shows that formative assessment has a more powerful effect on student learning than summative assessment. This case study of an 8th grade algebra classroom focuses on how the implementation of Formative Assessment Lessons (FALs) and the participation in teacher learning communities related to FALs changed in the teacher's instructional practices, over the course of a year, to promote students' mathematical reasoning and justification. Two classroom observations are analyzed to identify how the teacher elicited and built on students' mathematical reasoning, and how the teacher prompted students to respond to and develop one another's mathematical ideas. Findings show that the teacher solicited students' reasoning more often as the academic year progressed, and students also began developing mathematical reasoning in meaningful ways, such as articulating their mathematical thinking, responding to other students' reasoning, and building on those ideas leading by the teacher. However, findings also show that teacher change in teaching practices is complicated and intertwined with various dimensions of teacher development. This study contributes to the understanding of changes in teaching practices, which has significant implications for teacher professional development and frameworks for investigating teacher learning.

An Analysis of Components of Reasoning Process according to the Levels of Cognitive Demands of the Reasoning Tasks -Focused on the Highschool level Mathematical Sequence- (추론 과제의 인지적 난이도 수준에 따른 추론 과정 구성요소 분석 -고등학교 수준 수열 단원을 중심으로-)

  • Oh, Young-Seok
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.395-423
    • /
    • 2019
  • The purpose of the study is to analyze the levels of cognitive demands and components of the reasoning process presented in the mathematical sequence section of three high school mathematics textbooks in order to provide implications for the development of reasoning tasks in the future mathematics textbooks. The results of the study have revealed that most of the reasoning tasks presented in the mathematical sequence section of the three high school mathematics textbooks seemed to require low-level cognitive demands and that low-level cognitive demands reasoning tasks required only a component of one reasoning process. On the other hand, only a portion of the reasoning tasks appeared to require high-level of cognitive demands, and high-level cognitive demands reasoning tasks required various components of reasoning process. Considering the results of the study, it seems to suggest that we need more high-level cognitive demands reasoning tasks to develop high-level cognitive reasoning that would provide students with learning opportunities for various processes of reasoning, and that would provide a deeper understanding of the nature of reasoning.

Development of the Items for the Assessment of Mathematical Thinking (수학적 사고력 측정을 위한 수학 평가 도구의 개발)

  • Shin, Joon-Sik;Ko, Jung-Hwa;Park, Moon-Hwan;Park, Sung-Sun;Seo, Dong-Yeop
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.3
    • /
    • pp.619-640
    • /
    • 2011
  • The study aims the introducing the items for the assessment of mathematical thinking including mathematical reasoning, problem solving, and communication and the analyzing on the responses of the 5th grade pupils. We categorized the area of mathematical reasoning into deductive reasoning, inductive reasoning, and analogy; problem solving into external problem solving and internal one; and communication into speaking, reading, writing, and listening. And we proposed the examples of our items for each area and the 5th grade pupils' responses. When we assess on pupil's mathematical reasoning, we need to develop very appropriate items needing the very ability of each kind of mathematical reasoning. When pupils solve items requesting communication, the impact of the form of each communication seem to be smaller than that of the mathematical situation or sturucture of the item. We suggested that we need to continue the studies on mathematical assessment and on the constitution and utilization of cognitive areas, and we also need to in-service teacher education on the development of mathematical assessments, based on this study.

  • PDF

A Comparison on the Relations between Affective Characteristics and Mathematical Reasoning Ability of Elementary Mathematically Gifted Students and Non-gifted Students (초등 수학영재와 일반학생의 정의적 특성과 수학적 추론 능력과의 관계 비교)

  • Bae, Ji Hyun;Ryu, Sung Rim
    • Education of Primary School Mathematics
    • /
    • v.19 no.2
    • /
    • pp.161-175
    • /
    • 2016
  • The purpose of this study is to measure the differences in affective characteristics and mathematical reasoning ability between gifted students and non-gifted students. This study compares and analyzes on the relations between the affective characteristics and mathematical reasoning ability. The study subjects are comprised of 97 gifted fifth grade students and 144 non-gifted fifth grade students. The criterion is based on the questionnaire of the affective characteristics and mathematical reasoning ability. To analyze the data, t-test and multiple regression analysis were adopted. The conclusions of the study are synthetically summarized as follows. First, the mathematically gifted students show a positive response to subelement of the affective characteristics, self-conception, attitude, interest, study habits. As a result of analysis of correlation between the affective characteristic and mathematical reasoning ability, the study found a positive correlation between self-conception, attitude, interest, study habits but a negative correlation with mathematical anxieties. Therefore the more an affective characteristics are positive, the higher the mathematical reasoning ability are built. These results show the mathematically gifted students should be educated to be positive and self-confident. Second, the mathematically gifted students was influenced with mathematical anxieties to mathematical reasoning ability. Therefore we seek for solution to reduce mathematical anxieties to improve to the mathematical reasoning ability. Third, the non-gifted students that are influenced of interest of the affective characteristics will improve mathematical reasoning ability, if we make the methods to be interested math curriculum.

A case study of the impact of inquiry-oriented instruction with guided reinvention on students' mathematical activities (안내된 재발명을 포함한 탐구-중심 수업이 학생들의 수학적 활동에 미치는 영향에 관한 사례연구)

  • Kim, Ik-Pyo
    • The Mathematical Education
    • /
    • v.49 no.2
    • /
    • pp.223-246
    • /
    • 2010
  • Goos(2004) introduced educational researchers' demand for change on the way that mathematics is taught in schools and the series of curriculum documents produced by the National council of Teachers of Mathematics. The documents have placed emphasis on the processes of problem solving, reasoning, and communication. In Korea, the national curriculum documents have also placed increased emphasis on mathematical activities such as reasoning and communication(1997, 2007).The purpose of this study is to analyze the impact of inquiry-oriented instruction with guided reinvention on students' mathematical activities containing communication and reasoning for science high school students. In this paper, we introduce an inquiry-oriented instruction containing Polya's plausible reasoning, Freudenthal's guided reinvention, Forman's sociocultural approach of learning, and Vygotsky's zone of proximal development. We analyze the impact of mathematical findings from inquiry-oriented instruction on students' mathematical activities containing communication and reasoning.