Cho, Jin Woo;Park, Minsun;Lee, Kyeong-Hwa;Lee, Eun-Jung
School Mathematics
/
v.18
no.1
/
pp.193-214
/
2016
Teachers' questioning plays an important role in mathematics teaching and learning by asking students to react or to participate in mathematical discourse. Previous studies on teachers' questioning have not focused on how to questioning to formulate an effective mathematical discourse which is contributed by students because studies mostly analyzed and categorized teachers' questions according to cognitive levels of questions without consideration of context. Therefore, this study explored characteristics of teachers' questioning to formulate an effective characteristics of teachers' questioning to formulate an effective mathematical discourse in mathematics classrooms. By reviewing and analyzing mathematics discourse and studies on teachers' questioning theoretically, we presented openness, sharedness, and productivity as characteristics of teachers' questioning. Through a middle school mathematics teacher's case, we examined three characteristics were necessary to formulate an effective mathematical discourse. Based on results from theoretical analysis and case analysis, we discussed that openness, sharedness, and productivity would be useful as a framework to analyze teachers' questioning.
Through quantitative analysis of two math classroom videos, combined with the relationship between types of teachers' questioning and students' answering, it is concluded the following problems are in the mathematics classroom teaching: (1) The time of teachers' questioning is longer, the number is too much, with managerial questions and prompting questions is given priority to; (2) Teachers' questioning time is longer than students' answering time, comprehensive answer is more, creative answer is little; (3) In the classroom questioning, students' participation is low; and (4) There is a significant correlation between types of teachers' questioning and length of waiting time after questions. In response to these phenomena, we propose strategies as follows: pursuit of timeliness of classroom questioning, reducing inefficient questions, to increase efficient questions, adopting different waiting strategies for different questioning types, to mobilize students' thinking activities, and improving students' participation etc.
The purpose of this paper was to analyze a teacher's questioning in the learner-centered mathematics lessons and investigate its effects on the construction of learner's knowledge. For this study, it is analysed that the teacher's questioning in the 3 observed learner-centered lessons concerning elementary division topic. The study results showed that the characteristics of the teacher's questioning were respecting of learner's informal mathematical thinking, open-ended questioning for divergent thinking, appropriate questioning at every group, and respecting classroom norm. Teacher's questioning affects the quality of learner's mathematical thinking and his or her attitude toward mathematics.
Journal of Elementary Mathematics Education in Korea
/
v.14
no.3
/
pp.865-884
/
2010
The purpose of this research was to analyze the characteristics of teachers' questionings in the geometry field and suggest the characteristics of teacher questioning to enhance students' mathematical creativity. Teacher questioning plays a role to students' mathematical achievements, mathematical thinking, and their attitudes toward mathematics. However, there has been little research on the roles of teacher questioning on students' mathematical creativity. In this research, researchers analyzed teachers' questions concerning the concepts of triangles in the geometric areas of 4th grade Korean revised 2007 mathematics textbooks. We also analyzed teachers' questionings in the three lessons provided by the Jeju Educational Internet Broadcasting System. We classified and analyzed teachers' questionings by the sub-factors of creativity. The results showed that the teachers did not use the questionings that appropriately enhances students' mathematical creativity. We suggested that teachers need to be prepared to ask questions such as stimulating students' various mathematical thinking, encouraging many possible responses, and not responding with yes/no. Instead, teachers need to encourage students to explain the reasons of their responses and to take part in learning activities with interest.
The purpose of this research was to analyze questioning types of the Korean Elementary Mathematics Textbook in grade 3 and suggest the direction of questioning strategies for enhancing creativity in mathematics lessons. For the research, the researcher analyzed questioning types of the 3rd grade mathematics textbook and the changes of the questions compared with the questions in the previous textbooks. The author suggested the following recommendations. First, the questioning strategies of the revised mathematics textbook tends more to enhance students' creativity than the previous ones did. Second, teachers need to know the students' level of mathematics before starting their mathematics lessons because teachers can provide more effective differentiated questioning to the students. Third, students can response tuned to their level of mathematics if they meet with open-ended questions. It is desirable to develop good open-ended questions to fit students' abilities. Last, teachers should provide opportunities for students to share their own mathematical thinking. In risk-free environment, students can willingly participate at debating over mathematics proofs and refutation. Teachers should make efforts to make the classroom norm or culture free to debate among students, which leads to enhancement of students' creativity or mathematical creativity.
Based on the framework of Huffered-Ackles, Fuson and Sherin(2004), data were analyzed in terms of 3 components: explaining(E), questioning(Q) and justifying(J) of students' mathematical concepts and problem solving in a math classroom. The students used varied presentations to explain and justify their mathematical concepts and ideas. They corrected their mathematical errors or misconceptions through discourses. In addition, they constructed and clarified their concepts and thinking while they were interacted. We were able to recognize there was a special feature in discourses that encouraged the students to construct and develop their mathematical concepts. As they participated in math class and received feedback on their learning, the whole class worked cooperatively in a positive way. Their discourse was improved from the level of the actual development to the level of the potential development and the pattern of interaction moved from ERE(Elicitaion-Response-Elaboration to PD(Proposition Discussion).
The objective of this study is to search the recognition of teacher on the pattern and characteristics of the questioning sentence of the newly appointed teachers for the mathematics class through the case study for the 2ndyear teachers. The study participants' class was recorded in video and individual interview was made for 4 times. The pattern of the questioning sentence in the observed class was analyzed using the classification frame with addition of creativity related items to the classification frame suggested by Mogan & Saxton(2006). The questioning sentence and recognition on the mathematics class for the newly appointed teachers were analyzed based on the individual meeting and class materials. In result, the questioning sentence for confirmation was most frequent (69%) and questioning sentence of understanding (25%) and the questioning sentence for introspection (6%) in its priority. It was known that the questioning sentence for extending the creativity didn't make it at all. It was revealed that the participant teachers in this study used the questioning sentence pattern for fact confirmation of the student most frequently and the use of the questioning sentence for accelerating the creative thinking of the student was lacked. In addition, the teachers recognized that they manage the class oriented to questioning sentence for obtaining the concept. It was known that the education for the questioning sentence which accelerates the creativity and other thinking as well as the fact confirmation pattern is necessary through the training for the new teachers in the future.
The purpose of this study is to examine not only students' cognition in the mathematical error-finding activity of the concept of irrational numbers, but also the students' learning stance regarding the use of errors and a teacher's questioning strategies that lead to changes in the level of mathematical discourse. To this end, error-finding individual activities, group activities, and additional interviews were conducted with 133 middle school students, and students' cognition and the teacher's questioning strategies for changes in students' learning stance and levels of mathematical discourse were analyzed. As a result of the study, students' cognition focuses on the symbolic representation of irrational numbers and the representation of decimal numbers, and they recognize the existence of irrational numbers on a number line, but tend to have difficulty expressing a number line using figures. In addition, the importance of the teacher's leading and exploring questioning strategy was observed to promote changes in students' learning stance and levels of mathematical discourse. This study is valuable in that it specified the method of using errors in mathematics teaching and learning and elaborated the teacher's questioning strategies in finding mathematical errors.
The objective of this study is to explore the meaning generated through discourse in three different types of 1st-grade middle school textbooks in Korea and CMP textbook in the United States, specifically focusing on histograms. Through a discursive perspective, the study aims to analyze the characteristics of questioning within the stages of statistical problem-solving found in histogram tasks. The findings highlight several significant points. Firstly, variations exist in the definitions of histograms between Korean and US CMP textbooks. Secondly, diverse discursive structures contribute to the interpretation and understanding of histograms in textbooks. Thirdly, limitations are observed in the stages of statistical problem-solving reflected in histogram tasks. Lastly, distinctions are identified in the types of questioning employed in histogram tasks between Korean and US CMP textbooks. Building on these insights, the study suggests concrete ideas for enhancing the process of defining histograms and refining the questioning in histogram tasks.
The purpose of this study was to provide useful information for teachers by analyzing various levels of teacher-student communication in elementary mathematics classes and students' mathematical thinking. This study explored mathematical communication of 3 classrooms with regard to questioning, explaining, and the source of mathematical ideas. This study then probed the characteristics of students' mathematical thinking in different standards of communication. The results showed that the higher levels of teacher-student mathematical communication were found with increased frequency of students' mathematical thinking and type. The classroom that had a higher level of Leacher-student mathematical communication was exhibited a higher level of students' mathematical thinking. This highlights the importance of mathematical communication in mathematics c1asses and the necessity of further developing skills of mathematical communication.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.