• Title/Summary/Keyword: mathematical practice

Search Result 378, Processing Time 0.025 seconds

CONDITION MONITORING USING EMPIRICAL MODELS: TECHNICAL REVIEW AND PROSPECTS FOR NUCLEAR APPLICATIONS

  • Heo, Gyun-Young
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.49-68
    • /
    • 2008
  • The purpose of this paper is to extensively review the condition monitoring (CM) techniques using empirical models in an effort to reduce or eliminate unexpected downtimes in general industry, and to illustrate the feasibility of applying them to the nuclear industry. CM provides on-time warnings of system states to enable the optimal scheduling of maintenance and, ultimately, plant uptime is maximized. Currently, most maintenance processes tend to be either reactive, or part of scheduled, or preventive maintenance. Such maintenance is being increasingly reported as a poor practice for two reasons: first, the component does not necessarily require maintenance, thus the maintenance cost is wasted, and secondly, failure catalysts are introduced into properly working components, which is worse. This paper first summarizes the technical aspects of CM including state estimation and state monitoring. The mathematical background of CM is mature enough even for commercial use in the nuclear industry. Considering the current computational capabilities of CM, its application is not limited by technical difficulties, but by a lack of desire on the part of industry to implement it. For practical applications in the nuclear industry, it may be more important to clarify and quantify the negative impact of unexpected outcomes or failures in CM than it is to investigate its advantages. In other words, while issues regarding accuracy have been targeted to date, the concerns regarding robustness should now be concentrated on. Standardizing the anticipated failures and the possibly harsh operating conditions, and then evaluating the impact of the proposed CM under those conditions may be necessary. In order to make the CM techniques practical for the nuclear industry in the future, it is recommended that a prototype CM system be applied to a secondary system in which most of the components are non-safety grade. Recently, many activities to enhance the safety and efficiency of the secondary system have been encouraged. With the application of CM to nuclear power plants, it is expected to increase profit while addressing safety and economic issues.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

Discussion on the Guidance of Dual Numeral System (이중 수사(數詞) 체계 지도에 대한 논의)

  • Kang, Yunji
    • Education of Primary School Mathematics
    • /
    • v.25 no.2
    • /
    • pp.161-178
    • /
    • 2022
  • Korean uses a dual numeral system consisting of native and Chinese words. This dual numerical system is customarily selected in real life, mixed with two methods, or irregularly transformed. Therefore, the burden on both students and teachers is increased in the learning guidance process of numeral. This study recognized the need to improve the difficulty of learning guidance due to the dual numeral system. To this end, the context in which the numeral system method is selected, various modified cases, and related guidance contents of the current curriculum and textbooks were analyzed and organized. As a result of the analysis, there were characteristics of the selection and deformation of the numeral system method, which appears according to the actual situation using numerical. However, the criteria for characteristics were ambiguous and there were no specific guidance guidelines in the curriculum and textbooks. In this case, since the role of the teacher is more important, the teacher should be aware of the detailed characteristics of the actual situation related to the dual numeral system and let the student understand through experience and practice on various aspects of the use of the dual numeral system.

Gradient Descent Training Method for Optimizing Data Prediction Models (데이터 예측 모델 최적화를 위한 경사하강법 교육 방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.305-312
    • /
    • 2022
  • In this paper, we focused on training to create and optimize a basic data prediction model. And we proposed a gradient descent training method of machine learning that is widely used to optimize data prediction models. It visually shows the entire operation process of gradient descent used in the process of optimizing parameter values required for data prediction models by applying the differential method and teaches the effective use of mathematical differentiation in machine learning. In order to visually explain the entire operation process of gradient descent, we implement gradient descent SW in a spreadsheet. In this paper, first, a two-variable gradient descent training method is presented, and the accuracy of the two-variable data prediction model is verified by comparison with the error least squares method. Second, a three-variable gradient descent training method is presented and the accuracy of a three-variable data prediction model is verified. Afterwards, the direction of the optimization practice for gradient descent was presented, and the educational effect of the proposed gradient descent method was analyzed through the results of satisfaction with education for non-majors.

Exploring Data Categories and Algorithm Types for Elementary AI Education (초등 인공지능 교육을 위한 데이터 범주와 알고리즘 종류 탐색)

  • Shim, Jaekwoun
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.167-173
    • /
    • 2021
  • The purpose of this study is to discuss the types of algorithms and data categories in AI education for elementary school students. The study surveyed 11 pre-elementary teachers after providing education and practice on various data, artificial intelligence algorithm, and AI education platform for 15 weeks. The categories of data and algorithms considering the elementary school level, and educational tools were presented, and their suitability was analyzed. Through the questionnaire, it was concluded that it is most suitable for the teacher to select and preprocess data in advance according to the purpose of the class, and the classification and prediction algorithms are suitable for elementary AI education. In addition, it was confirmed that Entry is most suitable as an AI educational tool, and materials that explain mathematical knowledge are needed to educate the concept of learning of AI. This study is meaningful in that it specifically presents the categories of algorithms and data with in AI education for elementary school students, and analyzes the need for related mathematics education and appropriate AI educational tools.

  • PDF

Montgomery Multiplier with Very Regular Behavior

  • Yoo-Jin Baek
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.17-28
    • /
    • 2024
  • As listed as one of the most important requirements for Post-Quantum Cryptography standardization process by National Institute of Standards and Technology, the resistance to various side-channel attacks is considered very critical in deploying cryptosystems in practice. In fact, cryptosystems can easily be broken by side-channel attacks, even though they are considered to be secure in the mathematical point of view. The timing attack(TA) and the simple power analysis attack(SPA) are such side-channel attack methods which can reveal sensitive information by analyzing the timing behavior or the power consumption pattern of cryptographic operations. Thus, appropriate measures against such attacks must carefully be considered in the early stage of cryptosystem's implementation process. The Montgomery multiplier is a commonly used and classical gadget in implementing big-number-based cryptosystems including RSA and ECC. And, as recently proposed as an alternative of building blocks for implementing post quantum cryptography such as lattice-based cryptography, the big-number multiplier including the Montgomery multiplier still plays a role in modern cryptography. However, in spite of its effectiveness and wide-adoption, the multiplier is known to be vulnerable to TA and SPA. And this paper proposes a new countermeasure for the Montgomery multiplier against TA and SPA. Briefly speaking, the new measure first represents a multiplication operand without 0 digits, so the resulting multiplication operation behaves in a very regular manner. Also, the new algorithm removes the extra final reduction (which is intrinsic to the modular multiplication) to make the resulting multiplier more timing-independent. Consequently, the resulting multiplier operates in constant time so that it totally removes any TA and SPA vulnerabilities. Since the proposed method can process multi bits at a time, implementers can also trade-off the performance with the resource usage to get desirable implementation characteristics.

Elementary Teachers' Epistemological Beliefs and Practice on Convergent Science Teaching: Survey and Self-Study (융합적 과학수업에 대한 초등교사의 인식론적 신념과 실행 -조사연구 및 자기연구-)

  • Lee, Sooah;Jhun, Youngseok
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.4
    • /
    • pp.359-374
    • /
    • 2020
  • This study is a complex type consisting of survey study and self-study. The former investigated elementary teachers' epistemological beliefs on convergence knowledge and teaching. As a representative of the result of survey study I, as a teacher as well as a researcher, was the participant of the self-study, which investigated my epistemological belief on convergence knowledge and teaching and my execution of convergent science teaching based on family resemblance of mathematics, science, and physical education. A set of open-ended written questionnaires was administered to 28 elementary teachers. Participating teachers considered convergent teaching as discipline-using or multi-disciplinary teaching. They also have epistemological beliefs in which they conceived convergence knowledge as aggregation of diverse disciplinary knowledge and students could get it through their own problem solving processes. As a teacher and researcher I have similar epistemological belief as the other teachers. During the self-study, I tried to apply convergence knowledge system based on the family resemblance analysis among math, science, and PE to my teaching. Inter-disciplinary approach to convergence teaching was not easy for me to conduct. Mathematical units, ratio and rate were linked to science concept of velocity so that it was effective to converge two disciplines. Moreover PE offered specific context where the concepts of math and science were connected convergently so that PE facilitated inter-disciplinary convergent teaching. The gaps between my epistemological belief and inter-disciplinary convergence knowledge based on family resemblance and the cases of how to bridge the gap by my experience were discussed.

Delphi Survey to Develop an Analysis Framework for Mathematics Textbooks from a Critical Mathematics Education Perspective (비판적 수학교육 관점에 따른 수학교과서 분석준거 개발: 전문가 델파이 조사를 중심으로)

  • Song, Ryoon-Jin;Ju, Mi-Kyung
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.1
    • /
    • pp.113-135
    • /
    • 2017
  • The purpose of the research was to develop an analysis framework for Korean mathematics textbooks from a critical mathematics education perspective. For this, we conducted a comprehensive literature review regarding critical theory, critical education, and critical mathematics education. Based on the literature review, we derived a preliminary framework for textbook analysis. To validate the preliminary framework delphi survey was carried out twice with 21 expert panelists in the field of mathematics education and multicultural education. The first delphi survey was conducted with open-ended questions to investigate diverse opinions regarding educational goals, contents, and teaching methods of critical mathematics education. The second delphi survey was conducted with Likert-type scale and it was analyzed using Mean, Contents Validity Ratio, Degree of Consensus. As the result of the whole research procedures, the final analysis framework was developed consisting of four categories: classical knowledge, community knowledge, communicative knowledge, and political knowledge. A development of the analysis framework from a critical mathematics education perspective could give a significant impact on the mathematics curriculum or mathematic teacher education in the Korea and a meaningful initial step for the effort of practicing critical mathematics education. It is expected that this study could not only incite consideration for the better mathematics education but also expand the prospect of research and practice in mathematics education. This study would provide a new paradigm of future mathematics education with which to teach and guide students to become members of world civil society with mathematical power and critical competency.

A Reconstruction of Area Unit of Elementary Mathematics Textbook Based on Freudenthal's Mathematisation Theory (Freudenthal의 수학화 이론에 근거한 제 7차 초등수학 교과서 5-가 단계 넓이 단원의 재구성)

  • You, Mi-Hyun;Kang, Heung-Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.1
    • /
    • pp.115-140
    • /
    • 2009
  • Freudenthal has advocated the mathematisation theory. Mathematisation is an activity which endow the reality with order, through organizing phenomena. According to mathematisation theory, the departure of children's learning of mathematics is not ready-made formal mathematics, but reality which contains mathematical germination. In the first place, children mathematise reality through informal method, secondly this resulting reality is mathematised by new tool. Through survey, it turns out that area unit of Korea's seventh elementary mathematics textbook is not correspond to mathematisation theory. In that textbook, the area formular is hastily presented without sufficient real context, and the relational understanding of area concept is overwhelmed by the practice of the area formular. In this thesis, first of all, I will reconstruct area unit of seventh elementary textbook according to Freudenthal's mathematisation theory. Next, I will perform teaching experiment which is ruled by new lesson design. Lastly, I analysed the effects of teaching experiment. Through this study, I obtained the following results and suggestions. First, the mathematisation was effective on the understanding of area concept. Secondly, in both experimental and comparative class, rich-insight children more successfully achieved than poor-insight ones in the task which asked testee comparison of area from a view of number of unit square. This result show the importance of insight in mathematics education. Thirdly, in the task which asked testee computing area of figures given on lattice, experimental class handled more diverse informal strategy than comparative class. Fourthly, both experimental and comparative class showed low achievement in the task which asked testee computing area of figures by the use of Cavalieri's principle. Fifthly, Experiment class successfully achieved in the area computing task which resulting value was fraction or decimal fraction. Presently, Korea's seventh elementary mathematics textbook is excluding the area computing task which resulting value is fraction or decimal fraction. By the aid of this research, I suggest that we might progressively consider the introduction that case. Sixthly, both experimental and comparative class easily understood the relation between area and perimeter of plane figures. This result show that area and perimeter concept are integratively lessoned.

  • PDF

Examine the Features of Evidence Based Instruction in Elementary Mathematics Teacher's Guidebook For Students with Math Learning Disabilities and Students with Underachievement - Only about Number and Operations (초등 수학 교사용지도서의 학습장애 학생 및 학습부진학생을 위한 증거기반교수 요인 포함수준 분석 - 수와 연산 영역을 중심으로)

  • Kim, Byeong-Ryong
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.2
    • /
    • pp.353-370
    • /
    • 2016
  • This study examined elementary mathematics teacher's guidebook to determine the inclusion level of 11 critical features of evidence based instruction. And the inclusion level of the features in teacher's guidebook were interpreted as 'Low', 'Middle' and 'High'. The results are as followings. First, The overall inclusion level of the features in teacher's guidebook is 'Middle' The inclusion level of the features in teacher's guidebook for 1st, 2nd, 3rd and 4th were 'Middle' but for 5th and 6th were 'Low'. Second, the inclusion level of the features 'Clarity of Objective', 'Single Concepts and Skill Taught', 'Use of Manipulatives and Representation', 'Explicit Instruction', 'Provision of Examples for new concepts and skill', 'Adequate Independent Practice Opportunities' and 'Progress Monitoring' were 'Middle' The inclusion level of the features 'Review of Prerequisite Mathematical Skills', 'Error correction and Corrective Feedback' and 'Instruction of Strategies' were 'Low'. And discussed the results.