1 |
L. G. Paul, 'A New Schedule for Asset Monitoring,' Online Publication at http://managingautomation.com (2007)
|
2 |
H. M. Hashemian, 'On-Line Testing of Calibration of Process Instrumentation Channels in Nuclear Power Plants,' NUREG/CR-6343, US Nuclear Regulatory Commission (1995)
|
3 |
J. W. Hines and R. Seibert, 'Technical Review of On-Line Monitoring Techniques for Performance Assessment,' NUREG/CR-6895, US Nuclear Regulatory Commission (2006)
|
4 |
J. W. Hines and E. Davis, 'Lessons Learned From the US Nuclear Power Plant On-Line Monitoring Programs,' Prog. Nucl. Ener., 46, 176 (2005)
DOI
ScienceOn
|
5 |
J. Mott, 'Pattern recognition software for plant surveillance,' Performance Software User's Group Meeting, King of Prussia, USA, June 1988
|
6 |
D. Simon, Optimal State Estimation: Kalman, H infinity, and Nonlinear Approaches, John Wiley & Sons, New York, (2006)
|
7 |
M. V. Kothare, B. Mettler, M. Morari, P. Bendotti, and C. Falinower, 'Level Control in the Steam Generator of a Nuclear Power Plant,' IEEE Trans. Cont. Syst. Tech., 8, 55 (2000)
DOI
ScienceOn
|
8 |
H. Wolfgang, M. Mariene and S. Stefa, Nonparametric and Semiparametric Models, Springer Verlag, Berlin (2004)
|
9 |
B. R. Upadhyaya and E. Eryurek, 'Application of Neural Networks for Sensor Validation and Plant Monitoring,' Nucl. Tech., 97, 170 (1992)
DOI
|
10 |
Y. Bartal, J. Lin, and R. E. Uhrig, 'Nuclear Power Plant Transient Diagnostics Using Artificial Neural Networks that Allow 'Don't-know' Classifications,' Nucl. Tech., 110, 436 (1995)
DOI
|
11 |
C. Vitanza, 'Overview of the OECD-Halden Reactor Project,' Nucl. Eng. Des., 207, 207, (2001)
DOI
ScienceOn
|
12 |
K. C. Gross and K. E. Humenik, 'Sequential Probability Ratio Test for Nuclear Plant Component Surveillance,' Nucl. Tech., 93, 131 (1991)
DOI
|
13 |
J. W. Hines and D. Garvey, 'Process and Equipment Monitoring Methodologies Applied to Sensor Calibration Monitoring,' Qual. Reli. Eng. Int., 23, 123, (2007)
DOI
ScienceOn
|
14 |
W. A. Campbell, Performance Test Codes 6 on Steam Turbine, American Society of Mechanical Engineers (ASME), New York (1996)
|
15 |
G. C. Alder, B. Blakeley, D. R. Fleming, W. C. Kettenacker, and G. L. Minner, Manuals for and -GT, ScienTech, Idaho Falls (1999)
|
16 |
M. Khadem, A. Ipakchi, F. J. Alexandro, and R.W. Colley, 'Application of Neural Networks to Validation of Feedwater Flowrate in a Nuclear Power Plant,' Proc. American Power Conf., Chicago, USA, Apr. 13-15, 1993
|
17 |
J. R. Koelsch, 'In Condition Monitoring, Early is Better,' On-line Publication at http://www.automationworld.com (2006)
|
18 |
P. F. Fantoni and A. Mazzola, 'Multiple-Failure Signal Validation in Nuclear Power Plants using Artificial Neural Networks,' Nucl. Tech., 113, 368 (1996)
DOI
|
19 |
A. Wald, Sequential Analysis, Dover Publications, Mineola (1975)
|
20 |
J. R. Koelsch, 'Profit from Condition Monitoring,' Online Publication at http://www.automationworld.com (2006)
|
21 |
SmartSignal Corporation, EPI*, Product Brochure (2007)
|
22 |
J. W. Hines and A. Usynin, 'MSET Performance Optimization Through Regularization,' Nucl. Eng. Tech., 37, 177 (2005)
과학기술학회마을
|
23 |
J. M. Zurada, Introduction to Artificial Neural Systems, West Publishing Company, St. Paul (1992)
|
24 |
M. G. Na, 'A Neuro-Fuzzy Inference System for Sensor Failure Detection Using Wavelet Denosing, PCA and SPRT,' Jour. Korean Nucl. Soc., 33, 483 (2001)
|
25 |
K. C. Gross, R. M. Singer, S. W. Wegerich, J. Mott, and E. Hansen, 'Multivariate State Estimation Technique (MSET) Based Surveillance System,' U.S. Patent 5,764,509 (1998)
|
26 |
AID Corporation, On-line Early Detection, Product Brochure (2007)
|
27 |
M. A. Kramer, 'Nonlinear Principal Component Analysis using Auto Associative Neural Networks,' AIChE Jour., 37, 233 (1991)
DOI
|
28 |
G. Heo, S. J. Lee, S. H. Chang, and S. S. Choi, 'Thermal Performance Test through On-line Turbine Cycle Performance Monitoring in Nuclear Power Plants,' Proc. Korean Nucl. Soc., Seoul, Korea, Oct. 1999
과학기술학회마을
|
29 |
S. W. Cheon and S. H. Chang, 'Application of Neural Networks to a Connectionist Expert System for Transient Identification in Nuclear Power Plants,' Nucl. Tech., 102, 177 (1993)
DOI
|
30 |
A. Raich and A. Cinar, 'Statistical Process Monitoring and Disturbance Diagnosis in Multivariate Continuous Processes,' AIChE Jour., 42, 995 (1996)
DOI
|
31 |
N. R. Draper and H. Smith, Applied Regression Analysis, 3rd, Wiley, New York (1998)
|
32 |
SmartSignal Corporation, Early Warning of Reactor Coolant Pump Seal Degradation, Product Brochure (2003)
|
33 |
G. Welch and G. Bishop, 'Technical Course 8: An Introduction to the Kalman Filter,' The Association for Computing Machinery SIGGRAPH 2001, Los Angeles, USA, Aug. 12-17, 2001
|
34 |
G. P. McCabe and D.S. Moore, Introduction to the Practice of Statistics, 5th, W.H. Freeman & Company, New York (2005)
|
35 |
S. H. An, Y. H. Jeong, and S. H. Chang, 'Development of Nuclear Power Plant Online Monitoring System using Statistical Quality Control,' Proc. American Nucl. Soc., Boston, USA, June 24-28, 2007
|
36 |
G. Guglielmi, T. Parisini, and G. Rossi, 'Fault Diagnosis and Neural Networks: a Power Plant Application,' Cont. Eng. Prac., 3, 601 (1995)
DOI
ScienceOn
|
37 |
P. F. Fantoni and A. Mazzola, 'A Pattern Recognition: Artificial Neural Network Based Model for Signal Validation in Nuclear Power Plants,' Annals of Nuclear Energy, 23, 1069 (1996)
DOI
ScienceOn
|
38 |
B. Rasmussen and J. W. Hines, 'Uncertainty Estimation for Empirical Signal Validation Modeling,' International Topical Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface Technology, Columbus, USA, Sep. 12-22, 2004
|
39 |
G. Heo, 'Thermal Power Estimation Based on a Neural Network and Principal Component Analysis in Nuclear Power Plants,' Master Thesis at KAIST (1998)
|
40 |
I. Parzit, 'Sequential Tests for Failure Detection,' Ann. Nucl. Ener., 17, 347 (1990)
DOI
ScienceOn
|
41 |
Electric Power Research Institute (EPRI), Heat Exchanger Performance Monitoring Guideline, NP-7552, EPRI (1991)
|
42 |
K. Teknomo, 'Kernel Regression,' On-line Publication at http://people.revoledu.com/kardi/tutorial/Regression/Kern elRegression/index.html
|
43 |
H. Bozdogan, Statistical Data Mining and Knowledge Discovery, p. 217, Chapman and Hall/CRC Press, Boca Raton, (2004)
|
44 |
S. R. Kim, Sequential Probability Ratio Test, Arche Publishing House, Seoul (1999)
|
45 |
S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, Englewood Cliffs (1994)
|
46 |
R. Koenker, Econometic Theory, Lecture Note at University of Illinois (2007)
|
47 |
P. F. Doruska, Methods for Quantitatively Describing Tree Crown Profiles of Loblolly Pine, Ph.D. Dissertation at Virginia Polytechnic Institute and State University (1998)
|
48 |
K. Kavaklioglu and B. R. Upadhyaya, 'Monitoring Feedwater Flow Rate and Component Thermal Performance of Pressurized Water Reactors by Means of Artificial Neural Networks,' Nucl. Tech., 107, 112 (1994)
DOI
|
49 |
J. Wakabayashi, A. Fukumoto, S. Tashima, and I. Kawahara, 'Application of Adaptive Kalman Filtering Technique for the Diagnostic System of Nuclear Power Plants,' IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, Albuquerque, USA Dec. 10-12, 1980
|
50 |
V. Cherkassky and F. Mulier, Learning from Data, Concept, Theory and Methods, 2nd, John Wiley and Sons, Hoboken (2007)
|
51 |
R. Uhrig and J. W. HINES, 'Computational Intelligence in Nuclear Engineering,' Nucl. Eng. Tech., 37. 127 (2005)
과학기술학회마을
|
52 |
SmartSignal Corporation, The Value of Predictive Analysis for Fossil-Fuel Power Plants, Product Brochure (2006)
|
53 |
M. G. Na, S. H. Shin, D. W. Jung, S. P. Kim, J. H. Jeong, and B. C. Lee, 'Estimation of Break Location and Size for Loss of Coolant Accidents Using Neural Networks,' Nucl. Eng. Des, 232, 289 (2004)
DOI
ScienceOn
|
54 |
G. Heo, 'Development of a Fouling Monitoring for Safety-Related Heat Exchanger,' Nucl. Eng. Des., Pending Review
|
55 |
R. L. Bickford, Surveillance System and Method Having an Adaptive Sequential Probability Fault Detection Test, US 7,082,379, (2006)
|
56 |
D. S. Bai, Statistical Quality Management, Youngchi, Seoul (1992)
|
57 |
T. Kourti and J. F. MacGregor, 'Multivariate SPC Methods for Process and Product Monitoring,' Jour. Qual. Tech., 28, 409, (1996)
DOI
|
58 |
P. F. Fantoni, 'Experiences and Applications of PEANO for Online Monitoring in Power Plants,' Prog. Nucl. Ener. 46, 206, (2005)
DOI
ScienceOn
|
59 |
Heat Exchange Institute (HEI), Standards for Power Plant Heat Exchangers, HEI (1998)
|
60 |
D. J. Kukulka, 'An Evaluation of Heat Transfer Surface Materials Used in Fouling Applications,' Heat Tran. Eng., 26, 42 (2005)
|
61 |
P. F. Fantoni, S. Figedy, and A. Racz, 'PEANO, A Toolbox for Real-time Process Signal Validation and Estimation,' OECD Halden Reactor Project HWR-515, Feb. 1998
|
62 |
G. Heo, S. S. Choi, and S. H. Chang, 'Thermal Power Estimation by Fouling Phenomena Compensation Using Wavelet and Principal Component Analysis,' Nucl. Eng. Des., 199, 31 (2000)
DOI
ScienceOn
|
63 |
P. C. Badavas, Real-Time Statistical Process Control, Prentice Hall PTR, Upper Saddle River (1992)
|
64 |
A. Racz, 'Detection of Small Leakages by a Combination of Dedicated Kalman Filters and an Extended Version of the Binary Sequential Probability Ratio Test,' Nuc. Tech., 104, 128 (1993)
DOI
|
65 |
N. Zavaljevski and K. C. Gross, 'Sensor Fault Detection in Nuclear Power Plants Using Multivariate Estimation Technique and Support Vector Machines,' Int. Conf. Yugoslav Nuclear Society, Belgrade, Yugoslavia, Oct. 2-5, 2000
|
66 |
Y. G. Du, D. Hodouin, and J. Thibault, 'Use of a Novel Autoassociative Neural Network for Nonlinear Steady- State Data Reconciliation,' AIChE Jour., 43, 1785 (1997)
DOI
ScienceOn
|