• Title/Summary/Keyword: mathematical objects

Search Result 242, Processing Time 0.03 seconds

Statistical Literacy of Fifth and Sixth Graders in Elementary School about the Beginning Inference from a Pictograph Task ('그림그래프에서 추론하기' 과제에서 나타나는 초등학교 5, 6학년 학생들의 통계적 소양)

  • Moon, Eunhye;Lee, Kwangho
    • Education of Primary School Mathematics
    • /
    • v.22 no.3
    • /
    • pp.149-166
    • /
    • 2019
  • The purpose of this study is to analyze the statistical literacy in elementary school students when they beginning inference. Picto-graphs provide statistical information and often data-related arguments they certainly qualify as objects for interpretation, for critical evaluation, and for discussion or communication of the conclusions presented. For research, the inference from pictograph task was designed and statistical literacy standards for evaluating the student's level was presented based on prior studies. Evaluating student's statistical literacy is meaningful in that it can check their current level. To know the student's current level can help them achieve a higher level of performance. The outcomes of this research indicate that pictograph can provide a basis for rich tasks displaying not only student's counting skills but also their appreciation of variation and uncertainty in prediction. Raising statistical thinking by students is an important goal in statistical education, and the experience of informal statistical reasoning can help with formal statistical reasoning that will be learned later. Therefore, the task about the inference from a pictograph, discussions on statistical learning of elementary school children are expected to present meaningful implications for statistical education.

The Study on Camera Control for Improvement of Gimbal Lock in Digital-Twin Environment (디지털 트윈 환경에서의 짐벌락 개선을 위한 카메라 제어방법에 대한 연구)

  • Kim, Kyoung-Tae;Kim, Young-Chan;Cho, In-Pyo;Lee, Sang-Yub
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.476-477
    • /
    • 2022
  • This study deals with rotation, which is one of the expression methods of motion used in the 3D development environment. Euler angle is a rotation method introduced by Leonhard Euler to display objects in three-dimensional space. Although three angles can handle all rotations in a three dimensional coordinate space, there are serious errors in this approach. If you rotate an object with Euler angles, you will face the problem of gimbal locks that cannot rotate under certain circumstances. In contrast to this, the method to rotate an object without a gimbal lock is the quaternion rotation with quaternion. Rather than a detailed mathematical proof of quaternion, it introduces what concept is used in the current 3D development environment, and applies it to camera rotation control to implement a rotating camera without a gimbal lock.

  • PDF

On The Reflection And Coreflection

  • Park, Bae-Hun
    • The Mathematical Education
    • /
    • v.16 no.2
    • /
    • pp.22-26
    • /
    • 1978
  • It is shown that a map having an extension to an open map between the Alex-androff base compactifications of its domain and range has a unique such extension. J.S. Wasileski has introduced the Alexandroff base compactifications of Hausdorff spaces endowed with Alexandroff bases. We introduce a definition of morphism between such spaces to obtain a category which we denote by ABC. We prove that the Alexandroff base compactification on objects can be extended to a functor on ABC and that the compact objects give an epireflective subcategory of ABC. For each topological space X there exists a completely regular space $\alpha$X and a surjective continuous function $\alpha$$_{x}$ : Xlongrightarrow$\alpha$X such that for each completely regular space Z and g$\in$C (X, Z) there exists a unique g$\in$C($\alpha$X, 2) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\alpha$$_{x}$, $\alpha$X) is called a completely regularization of X. Let TOP be the category of topological spaces and continuous functions and let CREG be the category of completely regular spaces and continuous functions. The functor $\alpha$ : TOPlongrightarrowCREG is a completely regular reflection functor. For each topological space X there exists a compact Hausdorff space $\beta$X and a dense continuous function $\beta$x : Xlongrightarrow$\beta$X such that for each compact Hausdorff space K and g$\in$C (X, K) there exists a uniqueg$\in$C($\beta$X, K) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\beta$$_{x}$, $\beta$X) is called a Stone-Cech compactification of X. Let COMPT$_2$ be the category of compact Hausdorff spaces and continuous functions. The functor $\beta$ : TOPlongrightarrowCOMPT$_2$ is a compact reflection functor. For each topological space X there exists a realcompact space (equation omitted) and a dense continuous function (equation omitted) such that for each realcompact space Z and g$\in$C(X, 2) there exists a unique g$\in$C (equation omitted) with g=g$^{\circ}$(equation omitted). Such a pair (equation omitted) is called a Hewitt's realcompactification of X. Let RCOM be the category of realcompact spaces and continuous functions. The functor (equation omitted) : TOPlongrightarrowRCOM is a realcompact refection functor. In [2], D. Harris established the existence of a category of spaces and maps on which the Wallman compactification is an epirefiective functor. H. L. Bentley and S. A. Naimpally [1] generalized the result of Harris concerning the functorial properties of the Wallman compactification of a T$_1$-space. J. S. Wasileski [5] constructed a new compactification called Alexandroff base compactification. In order to fix our notations and for the sake of convenience. we begin with recalling reflection and Alexandroff base compactification.

  • PDF

Study on Guidelines for Selecting Traditional Games in Relation to Multiple Intelligence Development (다중지능발달을 위한 민속놀이 선정기준 연구)

  • Kim, Eun Kyung;Kwon, Dae Won
    • Korean Journal of Childcare and Education
    • /
    • v.10 no.5
    • /
    • pp.229-248
    • /
    • 2014
  • The purpose of this study is to draw guidelines on how to select traditional games that would efficiently help and develop multiple intelligences in children. Guidelines standard of section inquiries were prepared through a Delphi survey targeting twenty experts in early childhood education and traditional games. As a result, linguistic intelligence questions regarding writing, listening, speaking and vocabulary acquisition were selected. logical-mathematical intelligence questions regarding strategy, counting, patterns, hypothesis, verification, and comparing, contrasting, calculating ability were selected. Spatial intelligence questions regarding drawing, coloring, representation activities, operating and creating were selected, physical performance intelligence questions regarding global muscles, eye-hand coordination, flexibility, accommodation force, balance, agility and muscular strength were selected. Musical intelligence included questions about singing, and playing musical instruments. Interpersonal intelligence included perspective-taking, role-sharing, cooperation and discussion. For intrapersonal intelligence questions regarding personal significance-ties, planning-decision making, emotional expression and problem solving were selected. Finally, in relation to naturalist intelligence, questions regarding living organisms, inanimate objects and seasons were selected. In addition, traditional games were analyzed based on the finalized guidelines, and the results showed that each of the traditional games would not only work with one intelligence at a time but with other different intelligence as well. In the light of that, the study confirmed the validity of the guidelines on how to select traditional games that would develop multiple intelligences in children.

A Study on the Prediction System of Block Matching Rework Time (블록 정합 재작업 시수 예측 시스템에 관한 연구)

  • Jang, Moon-Seuk;Ruy, Won-Sun;Park, Chang-Kyu;Kim, Deok-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.66-74
    • /
    • 2018
  • In order to evaluate the precision degree of the blocks on the dock, the shipyards recently started to use the point cloud approaches using the 3D scanners. However, they hesitate to use it due to the limited time, cost, and elaborative effects for the post-works. Although it is somewhat traditional instead, they have still used the electro-optical wave devices which have a characteristic of having less dense point set (usually 1 point per meter) around the contact section of two blocks. This paper tried to expand the usage of point sets. Our approach can estimate the rework time to weld between the Pre-Erected(PE) Block and Erected(ER) block as well as the precision of block construction. In detail, two algorithms were applied to increase the efficiency of estimation process. The first one is K-mean clustering algorithm which is used to separate only the related contact point set from others not related with welding sections. The second one is the Concave hull algorithm which also separates the inner point of the contact section used for the delayed outfitting and stiffeners section, and constructs the concave outline of contact section as the primary objects to estimate the rework time of welding. The main purpose of this paper is that the rework cost for welding is able to be obtained easily and precisely with the defective point set. The point set on the blocks' outline are challenging to get the approximated mathematical curves, owing to the lots of orthogonal parts and lack of number of point. To solve this problems we compared the Radial based function-Multi-Layer(RBF-ML) and Akima interpolation method. Collecting the proposed methods, the paper suggested the noble point matching method for minimizing the rework time of block-welding on the dock, differently the previous approach which had paid the attention of only the degree of accuracy.

Geometrically and Topographically Consistent Map Conflation for Federal and Local Governments (Geometry 및 Topology측면에서 일관성을 유지한 방법을 이용한 연방과 지방정부의 공간데이터 융합)

  • Kang, Ho-Seok
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.804-818
    • /
    • 2004
  • As spatial data resources become more abundant, the potential for conflict among them increases. Those conflicts can exist between two or many spatial datasets covering the same area and categories. Therefore, it becomes increasingly important to be able to effectively relate these spatial data sources with others then create new spatial datasets with matching geometry and topology. One extensive spatial dataset is US Census Bureau's TIGER file, which includes census tracts, block groups, and blocks. At present, however, census maps often carry information that conflicts with municipally-maintained detailed spatial information. Therefore, in order to fully utilize census maps and their valuable demographic and economic information, the locational information of the census maps must be reconciled with the more accurate municipally-maintained reference maps and imagery. This paper formulates a conceptual framework and two map models of map conflation to make geometrically and topologically consistent source maps according to the reference maps. The first model is based on the cell model of map in which a map is a cell complex consisting of 0-cells, 1-cells, and 2-cells. The second map model is based on a different set of primitive objects that remain homeomorphic even after map generalization. A new hierarchical based map conflation is also presented to be incorporated with physical, logical, and mathematical boundary and to reduce the complexity and computational load. Map conflation principles with iteration are formulated and census maps are used as a conflation example. They consist of attribute embedding, find meaning node, cartographic 0-cell match, cartographic 1-cell match, and map transformation.

A Comparative Study of Elementary School Mathematics Textbooks between Korea and Japan - Focused on the 4th Grade - (한국과 일본의 초등학교 수학교과서 비교 연구 - 4학년을 중심으로 -)

  • Lee, Jae-Chun;Kim, Seon-Yu;Kang, Hong-Jae
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • This research is to provide a useful reference for the future revision of textbook by comparative analysis with the textbook in the 4th grade of elementary school in Japan. The results from this research is same as follows: First, Korean curriculum is emphasizing the reasonable problem-solving ability developed on the base of the mathematical knowledge and skill. Meantime, Japanese puts much value on the is focusing on discretion and the capability in life so that they emphasize each person's learning and raising the power of self-learning and thinking. The ratio on mathematics in both company are high, but Japanese ensures much more hours than Korean. Second, the chapter of Korean textbook is composed of 8 units and the title of the chapter is shown as key word, then the next objects are describes as 'Shall we do$\sim$' type. Hence, the chapter composition of Japanese textbook is different among the chapter and the title of the chapter is described as 'Let's do$\sim$'. Moreover, Korean textbook is arranged focusing on present study, however Japanese is composed with each independent segments in the present study subject to the study contents. Third, Japanese makes students understand the decimal as the extension of the decimal system with measuring unit($\ell$, km, kg) then, learn the operation by algorithm. In Korea, students learn fraction earlier than decimal, but, in Japan students learn decimal earlier than fraction. For the diagram, in Korea, making angle with vertex and side comes after the concept of angle, vertex and side is explained. Hence, in Japan, they show side and vertex to present angle.

  • PDF

Analysis of the Algebraic Generalization on the Mathematically Gifted Elementary School Students' Process of Solving a Line Peg Puzzle (초등수학영재들이 페그퍼즐 과제에서 보여주는 대수적 일반화 과정 분석)

  • Song, Sang-Hun;Yim, Jae-Hoon;Chong, Yeong-Ok;Kwon, Seok-Il;Kim, Ji-Won
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.2
    • /
    • pp.163-177
    • /
    • 2007
  • Studies on mathematically gifted students have been conducted following Krutetskii. There still exists a necessity for a more detailed research on how these students' mathematical competence is actually displayed during the problem solving process. In this study, it was attempted to analyse the algebraic thinking process in the problem solving a peg puzzle in which 4 mathematically gifted students, who belong to the upper 0.01% group in their grade of elementary school in Korea. They solved and generalized the straight line peg puzzle. Mathematically gifted elementary school students had the tendency to find a general structure using generic examples rather than find inductive rules. They did not have difficulty in expressing their thoughts in letter expressions and in expressing their answers in written language; and though they could estimate general patterns while performing generalization of two factors, it was revealed that not all of them can solve the general formula of two factors. In addition, in the process of discovering a general pattern, it was confirmed that they prefer using diagrams to manipulating concrete objects or using tables. But as to whether or not they verify their generalization results using generalized concrete cases, individual difference was found. From this fact it was confirmed that repeated experiments, on the relationship between a child's generalization ability and his/her behavioral pattern that verifies his/her generalization result through application to a concrete case, are necessary.

  • PDF

A Study on Learning and Teaching Environments for Computers and Mathematics Education ('컴퓨터와 수학교육' 학습-지도 환경에 관한 연구)

  • Kim, Hwa-Kyung
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.4
    • /
    • pp.367-386
    • /
    • 2006
  • There are two strands for considering tile relationships between education and technology. One is the viewpoint of 'learning from computers' and the other is that of 'learning with computers'. In this paper, we call mathematics education with computers as 'computers and mathematics education' and this computer environments as microworlds. In this paper, we first suggest theoretical backgrounds ai constructionism, mathematization, and computer interaction. These theoretical backgrounds are related to students, school mathematics and computers, relatively As specific strategies to design a microworld, we consider a physical construction, fuctiionization, and internet interaction. Next we survey the different microworlds such as Logo and Dynamic Geometry System(DGS), and reform each microworlds for mathematical level-up of representation. First, we introduce the concept of action letters and its manipulation for representing turtle actions and recursive patterns in turtle microworld. Also we introduce another algebraic representation for representing DGS relation and consider educational moaning in dynamic geometry microworld. We design an integrating microworld between Logo and DGS. First, we design a same command system and we get together in a microworld. Second, these microworlds interact each other and collaborate to construct and manipulate new objects such as tiles and folding nets.

  • PDF

Aristotle's Static World and Traditional Education (아리스토텔레스의 정적인 세계와 전통적인 교육)

  • Oh, Jun-Young;Son, Yeon-A
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.2
    • /
    • pp.158-170
    • /
    • 2022
  • The purpose of this study is to understand the characteristics of Aristotle's view of nature that is, the static view of the universe, and find implications for education. Plato sought to interpret the natural world using a rational approach rather than an incomplete observation, in terms of from the perspective of geometry and mathematical regularity, as the best way to understand the world. On the other hand, Aristotle believed that we could understand the world by observing what we see. This world is a static worldview full of the purpose of the individual with a sense of purposive legitimacy. In addition, the natural motion of earthly objects and celestial bodies, which are natural movements towards the world of order, are the original actions. Aristotle thought that, given the opportunity, all natural things would carry out some movement, that is, their natural movement. Above all, the world that Plato and Aristotle built is a static universe. It is possible to fully grasp the world by approaching the objective nature that exists independently of human being with human reason and observation. After all, for Aristotle, like Plato, their belief that the natural world was subject to regular and orderly laws of nature, despite the complexity of what seemed to be an embarrassingly continual change, became the basis of Western thought. Since the universe, the metaphysical perspective of ancient Greece and modern philosophy, relies on the development of a dichotomy of understanding (cutting branches) into what has already been completed or planned, ideal and inevitable, so it is the basis of traditional teaching-learning that does not value learner's opinions.