• Title/Summary/Keyword: mathematical material

Search Result 591, Processing Time 0.029 seconds

A case study on activating of high school student's metacognitive abilities in mathematical problem solving process using guidance material for metacognitive activities (문제해결 과정에서 메타인지적 활동 안내를 통한 고등학생의 메타인지 능력 활성화 가능성 탐색)

  • 이봉주
    • The Mathematical Education
    • /
    • v.43 no.3
    • /
    • pp.217-231
    • /
    • 2004
  • The purpose of this paper is to investigate a new method for activating the metacognitive abilities that play a key role in the Mathematical Problem Solving Process (MPSP). The proposed research question is as follows: Can the MPSP activate metacognitive abilities of high school students in the pencil-and-paper environment using guidance material for metacognitive activities\ulcorner To solve this question, two case studies have been carried out. Two students for the study were selected via informal interview. They voluntarily took part in 13 experimental lectures. The activating paths of their metacognitive abilities in the MPSP were chronically described and analyzed. All the activating processes of the students focusing on the aspects of metacognitive behaviors were analyzed by means of interview, observation, self-report, and activity data. The two high school students participating in the MPSP voluntarily recognized and reflected their deficiencies in metacognitive abilities, and therefore maximized their own performance. They made quite significant progress in the course of activating their metacognitive abilities through voluntary participation and gained greater confidence in the MPSP. Hence they have become good problem solvers. They expressed not only the factors influencing their behavior but also their self-awareness during the metacognitive activities. In the long run, this experiment will increase possibilities for the internalization of the metacognitive process.

  • PDF

Topology Optimization using S-shape material model (S 모양 가상재료를 이용한 위상최적화)

  • Yoon, G.H.;Kim, Y.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.345-350
    • /
    • 2000
  • In this paper, we introduce a new artificial material model for topology optimization. The present material model, named S-shape material model, accelerates topology optimization process especially in mathematical programming. We overcome the instability and the flatness in heuristic optimization process. Numerical examples show the superiority of the proposed material.

  • PDF

Rigorous Model for Spherical Cell-support Aggregate

  • Moon, Seung-Hyeon;Lee, Ki-Beom;Satish J. Paruekar
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.42-50
    • /
    • 2001
  • The activity of immobilized cell-support particle aggregates is influenced by physical and biochemical elements, mass transfer, and physiology. Accordingly, the mathematical model discussed in this study is capable of predicting the steady state and transient concentration profiles of the cell mass and substrate, plus the effects of the substrate and product inhibition in an immobilized cell-support aggregate. The overall mathematical model is comprised of material balance equations for the cell mass, major carbon source, dissolved oxygen, and non-biomass products in a bulk suspension along with a single particle model. A smaller bead size and higher substrate concentration at the surface of the particle, resulted in a higher supply of the substrate into the aggregate and consequently a higher biocatalyst activity.

  • PDF

On Teaching Materials by Using the Rotations about the Origin and the Reflections in Lines through the Origin

  • Tanaka Masaki;Yamaguti Kiyosi
    • Research in Mathematical Education
    • /
    • v.9 no.3 s.23
    • /
    • pp.257-267
    • /
    • 2005
  • When notions of numbers are expanded from natural number to complex number, a similar mathematical phenomenon can be observed in each number. As a case study, to complex number, the phenomenon is investigated carefully and teaching materials are created. Then complex number is expressed with matrices and is geometrically treated, so a new number which is an extension of complex number is discovered. Thus, teaching material regarding to complex number and matrices is made for students of ordinary level. Moreover, for talented students, material about an extension of complex number can be added to the previous one.

  • PDF

Seismic retrofit system made of viscoelastic polymer composite material and thin steel plates

  • Nasab, Mohammad Seddiq Eskandari;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.153-164
    • /
    • 2022
  • In this study, a series of cyclic loading tests were performed on viscoelastic dampers (VED) composed of viscoelastic polymer composite material and thin steel plates to observe the variation of the mechanical properties under different loading conditions. A mathematical model was developed based on the Kelvin-Voigt and Bouc-Wen models to formulate the nonlinear force-displacement relationship of the viscoelastic damper. The accuracy of the proposed mathematical model was verified using the data obtained from the tests. The mathematical model was applied to analyze a reinforced concrete framed structure retrofitted with viscoelastic dampers. Nonlinear dynamic analysis results showed that the average maximum inter-story drift ratios of the retrofitted structure met the target limit state after installing the VED. In addition, both the maximum and residual displacements were significantly reduced after the installation of the VED.

Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity

  • Azizi, Mohamed Walid;Keblouti, Ouahid;Boulanouar, Lakhdar;Yallese, Mohamed Athmane
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.501-513
    • /
    • 2020
  • In the present work, the optimization of machining parameters to achieve the desired technological parameters such as surface roughness, tool radial vibration and material removal rate have been carried out using response surface methodology (RSM). The hard turning of EN19 alloy steel with coated carbide (GC3015) cutting tools was studied. The main problem faced in manufacturer of hard and high precision components is the selection of optimum combination of cutting parameters for achieving required quality of surface finish with maximum production rate. This problem can be solved by development of mathematical model and execution of experiments by RSM. A face centred central composite design (FCCD), which comes under the RSM approach, with cutting parameters (cutting speed, feed rate and depth of cut) was used for statistical analysis. A second-order regression model were developed to correlate the cutting parameters with surface roughness, tool vibration and material removal rate. Consequently, numerical and graphical optimization were performed to obtain the most appropriate cutting parameters to produce the lowest surface roughness with minimal tool vibration and maximum material removal rate using desirability function approach. Finally, confirmation experiments were performed to verify the pertinence of the developed mathematical models.

AN EXTENDED THEOREM FOR GRADIENTS AND SUBGRADIENTS

  • Rhee, Hyang Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.351-357
    • /
    • 2011
  • In this paper, we introduce certain concepts which we will provide us with a perspective and insight into the problem of calculating best approximations. The material of this paper will be mainly, but not only, used in developing algorithms for the one-sided and two-sided sided approximation problem.

NORMALIZED DUALITY MAPPING AND GENERALIZED BEST APPROXIMATIONS

  • Park, Sung Ho;Rhee, Hyang Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.849-862
    • /
    • 2011
  • In this paper, we introduce certain concepts which provide us with a perspective and insight into the generalization of orthogonality with the normalized duality mapping. The material of this paper will be mainly, but not only, used in developing algorithms for the best approximation problem in a Banach space.