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STRONG CONVERGENCE OF SOLUTIONS OF
NONLINEAR VOLTERRA
EQUATIONS IN BANACH SPACES

JoNG Soo JUNG

ABSTRACT The strong convergences of solutions to a nonhnear Volterra
equation are studied 1n Banach space As an application, a nonlinear
heat flow mn a homogeneous bar of unit length of a material with mem-
ory 1s 1nvestigated

1. Introduction

Let X be a recal Banach space and let A be a m-accretive operator
in X. We shall consider the strong convergences as t —» oo of solutions
to abstract nonlinear Volterra equation

(Vo,g.f) u(i)-i-‘/ot b(t—s)(Auls)+g(s)u(s))ds > f(t), t € RT = [0, 00)

where b: RT - R, g: R* -5 R* and f: RT — X are given, and the
integral 1s taken in the sense of Bochner.

The asymptotic behavior of solutions of (Vs g, ¢) has primarily been
studied in the case that g = 0. See [2, 4, 5, 10, 11, 13, 14, 15, 19]. In
particular, Kato {15] investigated the “unbounded behavior” of solution
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u(t) of (Vsp,s), that is, the behavior when u(t) is allowed to be un-
bounded, and improved the results of due to Clément (4] and Clément
and Nobhel [5] for the convergence of the solution u(t) of (Vs z) itself
as ¢t —» co. The unbounded behavior of the solution u(t) of (Vi f)
was given in [1, 12].

In this paper, we study the strong convergence of the solution ()
of (Vy,g,7) itself as t — oo in connection with the results of Clément [4],
Clément and Nohel [5] and Kato [15]. An application of the physical
problem is also investigated. Our study can be viewed as an attempt
to extend earlier corresponding results obtained in [4, 5, 15] in the case
that ¢ = 0.

2. Preliminaries

Let X be a real Banach space with norm | - ||, and dual (X*,{- [l.)-
The duality pairing between X and X* will be denoted by (-,-). Let A
be a set-valued operator in X with domain D{A) and range R(A). A
1s said to be accretive if [y, — 41,72 — z1]+ > 0 fory, € Az,, 1 =1, 2,
where [y, z]4. = limygo(flz+ Ayl —{lz[[)A~? for z, y € X. We say that 4
is m-aceretive if it is accretive and R(I + AA) = X for all A > 0, where
I stands for the identity on X. If A is m-accretive, one can define
its Yosida approximation Ay by Ay = A~} — Jy), with Jy = (I +
AA)~1, A > 0. Alsorecall that the Yosida approximation Ax (A > 0) of
a m-accretive operator A is strictly accretive; i.e., [Axz— Ay, z—y|- >
0 for z,y € X, where [y, z] = limyto(|z+ Ayl —|z])>~" for z, y € X.
(cf. [6, 19]).

As in [1], we assume throughout this paper that A is an m-accretive

operator on X and consider equation (Vy g ¢} under the following min-
imal assumptions:

(Hs) be AC1e(RT;R), b(0) =1, b € BV,,.(R";R),

(Hg) gc C(R+; R+)

(Hy) fe WLIRT; X), f(0) € D(A).

oc



STRONG CONVERGENCE OF SOLUTIONS 73

Here D{A) is the closure of D(A). According to {1, 5] under these
assumptions, the equation (Vi g 5) is (a.e on RY) equivalent to
du(t) d

i @

(E) (k *u)(t) + Au(t) + g(t)u(t) 3 k(&) F(0) + F(¢),

with 4{0) = f(0). Here * denotes the convolution k * z(t) = fot k(t —
s)z(s)ds, k satisfies

(2.1) )+ (kxd)(t)=1, t=0
and F is (a.e on RT) given by

(2.2) Pty = f'{t) + (kx f)(8).

Note that {2.1) can be rewritten as k + ¥ + k.= —¥_ so that. by (Hy). %
is uniquely determined in BV},.(RT;R). It also follows (see (Hy)} that
Fe L, (R"; X). The strong solutions are considered as functions in
WoHRY; X)) C(RT; D(A)) for which the equations (V,q,f) and (E)
hold a.et € R*. A function v € C(R"; D{A)) is said to be a generalized
solution of the equation (Vi ) if limyour = u in C([0,T]; X) for
any 0 < T' < 0o, where u), is the strong solution of the approximating
equation (Vs g,¢) (equivalently, (E,)) in which A is replaced by the
Yosida approximation Ay for each A > 0 (cf. [1, 6, 8]).

To study the convergence of generalized solutions of (Vpg,5), we
need the concept of a complete positivity of the kernel b. This concept
is defined as follows (cf. [5, 15]). For b € L} (R™;R), define s(b) and
r{b) € L} (R*;R) by the equations

(2.3) s(B)(t) + b s(b)(t) = 1

(2.4) r(B)(E) + b x r(b)(t) = b(t)

respectively. We say that b is completely positive on R if s{Ab) and
7{Ab) are nonnegative on Rt for every A > 0. It is well-known 2,
5] that if (Hp) is satisfied and k, defined by (2.1), is nonnegative
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and nonincreasing on R*, then the kernel & is completely positive
on Rt. Furthermore, in this case b satisfies 0 < d(t) < 1 for t > 0,
and lim; oo b(t) = b(co) exists with b(oo) = (1 + f; k{s)ds)™* if
k € LY(R*;R), and b(cc) = 0 if & ¢ L'(R*;R). It follows from this
fact that b(co) > 0 if and only if k¥ € L*(R*;R). Also, in this case,
b ¢ L{R+; K).

Finally, we recall the following important property of completely
positive kernel.

WEHRY; X). Thenk«w and k+|jw|| are locally absolutely continuous
and differentiable a.e. on RT. Furthermore,

d d
2.5 — (K * , > —(k=x*
(25) [0 w000 > 56+ 1w
for almost all t > 0.

3. Main results

Now, we study the convergence of solutions u(t) of (Vy g s) itself as
t — oo.

First, we have the following main result along with a slightly differ-
ent method from that of result of Kato [15] in the case that g = 0.

THEOREM 3 1 Let (Hyp), (Hg) and (Hy) be satisfied and let F be
associated to f by (2.2). Suppose that b 13 completely positive. Let
b€ LY(R*;R) and let g € L*(R*). Then for the generalized solution
u of (Vag,r),

) ==l < 3 ([ - s)ds ) fuo ~ ]
(3.1) - fo b(t — s)g(s)||uls) — u>||ds

+,/0 b(t — s)[F(s) — F™,u(s) — uv*],ds,
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where u™® = Jz(up + bF>®), b = f(;)o b(t)dt > 0 and F*° € X.

In particular, let F = Fy + F5. Suppose esther that Fy € L®(R*; X)
and limy_,o, F1{t) = F°° or that F} — F>* € IP(RT; X), 1 < p < oo,
and suppose that Fy € L*(R*; X) + LP(R™T; X} 1 < p< oo Then
limg 00 u{t) = ©™°

PrOOF Since Aj is m-accretive, there exists a 4§ € X such that
U + AU = up + bF®. The m-accretiveness of A guarantees that
limyouf® = u®™. Let uy be a strong solution of (Va4 ¢) Then, by
strictly accretiveness of Ay and the inequality (2.5), we have

0 S_ [A)"U,)(t) —_ A,\u‘,’f,u)‘(t) — U?\O]_

[_%m( ) - %(k *un)(t) — () (ua(t) — us?)

I

+ (D {uo— uf®) + F(1) - ~(uo - u) = F=,un(t) — uf7)-
< —( 0O — R+ B« s~ 0] + 9ar(0) - 571
(400 3 Yo = w1+ LF0) — B un(6) — o

and hence

d [nw(o Y R ui°u(t)] o) lua(t) —
sy

i
< ()~ o — ) + F(0) = 2, ual6) — 057
Define, for fixed A > 0,
2(8) = fuale) = w5l huo ~ ui?l,

olt) = = luo — ]+ [F(O) = F=,ur(t) — o = g()ur(8) — w7

(3.3) P(t) = z(t) + (k *x)(2).
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Then $(0) =0 and
(3.4)

L0(0) = S ua(t)—uh+bx fur N O}~ KO o w5 < 0

Using (2.1) (or k+k*b' = —¥') and means of the variation of constants
formula together with (3.3), we obtain

(5:5) 20 =9(0) + O =90 =6l + [ Y- (ads, 120

An integration by parts shows that (3.5) is equivalent to

(3.6) ﬂﬂ=Lb@—ﬂW@M&

Since b > {, we-deduce fom {3.4) and (3.6} that

ﬁﬂsl%@—@ﬂg@,

and hence we obtain
(3.7)

t
Jun(®) = 0 = o = w7 = = ([ o)) o = w57
+ /t b(t — s)[F(s) — F™,ux(s) — u3’]+ds
Q

- [0 b(t — 5)g(s)lfua(s) — ulds.

Letting A | 0 in (3.7), we obtain(3.1).

For the proof of the last assertion, since fg b(t —s)g(s)ds > 0 fort >
0, it is enough to show that either if lim; o0 y(t) = ¥ or if y—y> €
IP(RT;X), 1 < p < oo, then limy 00 fot b(t — s)||ly — y*>||(s)ds = 0.
But one can easily check these facts since b € L' (R™;R)and b(c0) = 0.
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THEOREM 3 2 Let (Hy), (Hy) and (Hy) be satisfied and let F be
associated to f by {2.2). Suppose that b 1s completely positive and thal
there exists anw > O such that A—wl is accretwe wn X. Let r(b), s(b)
be defined by (2.3}, (2.4), respectwely, and let g € L*(RY). Then, for
the generalized solution w of (Vyq.5),

)~ < (1- [ t B (rir o - )

(3.8) - | bt —ng(olutr) - wlar
+ [ rwn)e = D) - £, u(r) - u]
0

and
() = u[ + & * flu —u|({t)
< (1 +/0.k('r)d‘r —w/o‘ s(wb)(‘r)dT) [l — u|

3.9 i
B [ s o) — el

+ ] s(wb)(t — T)F(T) — F=,u(r) — u™)pdr
0

where F'° € X and u™ 15 the unique element in X sabisfying Au™ >
oo,

In particular, let F = Fy, + Fy. Suppose either that b ¢ L' (R';R)
and Fy € L®(R*; X) and lim,_, o0 F1{t) = F* or that k € L' (RT;R)
(this implies b ¢ LY RT)) F, — F™° ¢ IP(RT;X), 1 < p < oo,
and suppose that Fy € LY{R*; X))+ IP(RT;X), 1 < p < co. Then
limt_,oo 'H;(t) = u°°,

PROOF Let uy be a strong solution of (Vg 4 5) and 4y be the one

corresponding to 4y and f. Since A—wl 18 accretive, Ay —4, § = 55
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is (strictly) accretive. Thus, by the inequality (2.5}, we have
8llua(7) — @x(M] < [Axual(r) — Axia(7), ua(r) — @a(7)l-

< =L lllur(r) =~ da (D) + k¢ s — aal(7)

+g()lr(r) (O]

+ k(7)o — do]| + [F(7) = F(r),un(r) = @]+
Set a(t) = & llua(t) — @x(t)]l. Then it follows that

(3.10)
o) + k* afr) < ~(g(7) + )lua(r) — ax(7)]

+ [F(7) = F(7),ur(1) — aa(7)]4 ae TR

Now to show (3.8), observe that b+k*b = 1 and r{wb)+wb*r(wb) = wb
yield the relation r(wb) + k * r(wh) = w(l— 1+ r(wb)). Since r(wd) > 0
(by completely positivity of b), we multiply (3.10) by r{(wb)* to obtain
(3.11)

o)~ 8301 < (1= [ 7)) fuo —
+ (1= 2)rtn =l
=L [ remie - el - s(lar
+2 L @b} (e — F(r) = B(r), (7 — (1) s
Since 1 — £ = ;29— letting A | 0 in (3.11) yields
fu) - 201 < (1~ [ r(ob))ar ) o — ol
- L [ rtbe = ngtolatr) - atrler
+ 2 [ rne = DIFE) - B - i dr
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where @ is a generalized solution of (V, ; ;). Thus, in particular, if
Au®™ 3 F*  we obtain (3.8).

Next, to prove (3.9), observe that b+k*b = 1 and s(wb)+wx*s(wh) =
1 implies s(wh) + k * {wb) = 1 + 1 x k — w * s(wbd). Since s(wb) > 0 {by
completely positivity of b), we multiply (3.10) by s{wb)* to get
(3.12)

llea () = @x(O) + ko lux — @all(£) — ws(wb) * lua — ()

< (1 + /t k(1) — w /Ot s(wb)(r)dr) flrzo — o]

J0O /
w

- 5 s(wb) x fus — axll(0) - fo s(@b)(t = T)g(r)ua(r)

b3
~an(r)ldr + f s(@b)(t — )F(r) — () u(r) — (7)) 7.
Then, letting A | 0 1n (3.12), we have

fu(®) = 6O + kx - 3l (8
< (l +/0 k(r)dr — w/o s(wb)(r)d?‘) luo — Gol]
- [ st = ngtn)u(r) — atr)ar
+ / s(wb)(t — T)[F(1) = F(1),u(t) — a(7)] +-d7.
0
In particular, if Au®™ 3 F*°, we obtain (3.9). Since
| reb)e =gl - wlar 2 0
and .
fo s(wb)(t — T)g(T)||u(r) — u®|jdr > 0 for t >0,

the last statement follows from the fact that if & ¢ LY(RT;R), then
for every w > 0, limy e 8(wb)(t) = 0 and [, r(wb)(r)dr = 1 ([5,
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Proposition 2.1]). Note also that & € L'(R*;R) implies b ¢ L'(R*;R)
and then

* 1
w/o s{wb)(r)dr = 5(o0)

OO0
=1 +/ k(T)dT.
0

REMARK 1

(1) Theorem 3.1 is an improvement of Theorem 2 of Clément [4],
Theorem 3.2 of Clément and Nohel [5] and Theorem 3.1 of Kato [15]
in the case that g = 0.

(2) Theorem 3.3 in [5] and Theorem 3.2 in {15] is also a special case
of Theorem 3.2 if ¢ = 0.

(3) It follows from Theorem 3.2 that if A is a strongly m-accretive
operator, then the estimates of convergence can be obtained (here AT10
is not assumed bounded compact and X is arbitrary in comparison with
{21]). Some other strong convergence results were obtained in {13, 14]
m the case that g = 0.

4. An example

In this section, as in [1, 5, 19], we consider a nonlinear heat flow in
a homogeneous bar of unit length of a material with memory.

Let u(t,z), e(t, z), ¢(t,z) and p(t,z) denocte, respectively, the tem-
perature, internal energy, heat flux, and external heat supply at time
t and position z (—oo0 < t < 0o, 0 < z < 1). Let the ends of the bar
at x = 0 and =z = 1 be maintained at zero temperature. For simplicity
and without loss of generality let the history of w be prescribed as zero
when ¢ < 0 and 0 < £ < 1. The equation satisfied by u is derived from
the assumptions that in such materials the internal energy e and the
heat flux g are functionals of » and of the gradient of u respectively
(rather than functions of u and u.). Specifically, according to the the-
ory developed by, e.g., Gurtin and Pipkin [9], Nunziato [20] for heat
flow in materials of fading memory type, we assume that e and ¢ are

taken respectively as the functionals
(4.1)

e(t,x) = bou(t,z) +[0 Bt - s)u(s,z)ds + /(; ot — s)g(s)u(s, z)ds,
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(4.2) ¢{t,x) = —coo(uz(t,x)) + [0 y(t — s)o(uc(s,z))ds,

fort>0and 0 <z < 1.
Here by > 0, cg > 0 are positive constants and the functions
B, v : Rt — R are given sufficiently smooth functions called the

wnternal energy and heat fluz relazalion funchons, respectively. The
given funciion ¢ is a real function satisfying

(4.3) €C'(R), o{0)=0, o'(s)2po>0, sER,

for some pg > 0, aft) = ¢ - Jo v(s)ds, and g € C(RT;R*). In
the physical literature the relaxation functions 3, v are usually taken
as finite lincar combinations of decaying exponentials with positive
coefficients. For physwal reasons (see [5}, [19]), we should require at
least that 3, 7 € L*{R™) and

o0 oo
bo +/ B(t)dt >0 and ¢— f ~(t)dt > 0.
0 0

The law of balance of heat requires thal, the equation e, = —qx + u (=
—divq + p) should hold. If u(0,z) = wo(2){(0 < = < 1) is the initial
temperature distnibution 1 the rod, we obtain, in view of (4.1), (4 2)
and the assumption that the temperature at the ends of the rod is

zero, the following initial-boundary value problem to be satisfied by
the temperature u:

o bou(t,2) + (3 )(6,2) + (e qu)(t, )]

= coo(talty ) = (v % 0 )e)(t,7) + ity 2),
D<t<oo, O<z <,

u(t,0) = u(t,1) =0, >0,

u(0,2) =up{z), O0<z <l

(4.4)

We remark that if the history of u for t < 0 1s not zero, the integrals in
(4.1) and (4.2) range over the interval (~o0, ) (rather than (0,t)), and
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the resulting equation corresponding to (4.4) would have additional
known forcing terms stemming from the integrals over (—o0,0) in (4.1)
and (4.2).

Asin [1, 5, 20], we transform this initial-boundary value problem to
a Volterra integral equation in the space X = L*(0,1). Let

t
(4.5) G(t,z) = up(z) + / (s, z)ds, t>0, 0<z <],
0
and note that
éj
co0 (Uz)s = V¥ 0 (te)e = o (@ * 0 (us)s).

Then (4.4) with by = 1 and ¢g = 1 (without loss of generality} leads to
the equation

(4.6) utFrutax{Au+gu)=G, t20, 0<z<l

The nonlinear operator A : D(A) C X — X is defined by Au =
—0(Ug )z, together with the boundary conditions u(t,0) = u(t,1) =0
and

D(A) = {u € Hj(0,1) : o{uz ), € X}

It is well known that if assumptions (4.3) are satisfied, then A = 0¢,
where ¢ : L%(0,1) - (—o0,00],

Ly | l
(4.7) oly) = [OW(EE)(ﬂ?)dx if y € Hj(0,1)

+o00 otherwise,

where W(2) = f; o(€)d€. Thus ¢ is convex, lower-semicontinuous and
proper on L*(0,1) ( in fact, ¢(y) > 0), and A is maximal monotone
and hence m-accretive on X (see Lemma 2.3 in [19] (cf. [3])).

Let r(3) denote the resolvent kernel of 8 (i.e., »(8) +B3*r(3) = 3).
Clearly, if 8 € L*(R"), then r(3) € LL (R*) (at least). Next, define
b:R* 5 Rand f:R" - X by

(4.8) b=a—71(B)xa,
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and

(4.9) f=G-r(B)=C,

respectively. Then the variation of constants formula shows that (4 6)
is equivalent to

(410) u-+b* (Au+gu) = f (= uo + 1 x (u—r(B) * = uor(B))),

which is an equation of the form (Vj 4, f).

Now, we can apply the theory developed in Section 3 to discuss the
strong convergence of the generalized solution of (4.10) (equivalent to
the heat flow problem (4.4) with bp = 1 and cp = 1). We assume
that up € L2(0,1) and that the forcing function g € LL _(R*; L*(0,1))
Then, by (4.5), {4.9), and since the resolvent of g satisfies r(3) €
L} .(R*) under the condition 8 € L'(R™), 1t is easily scen that f €
WLLHR™: L2{0,1)) under same condition. Also note that D{A) is dense
in X, so that all of (Hy) is satisfied. If moreover, we take (Hs), (Hg)
to hold, then {4.10) has a unique generalized solution « on R*.

Before giving the convergence result for (4.10), we now state a lemma
which is essentially [5, Lemma 4.2].

LEMMA 41 Let 3 be bounded, nonnegative, nonincreasing and con-

vex on R*. Let v be positive, nomncreasing, log-convez, and bounded
on R*. Suppose that

afoo) =1 — /00 y(#)dt >0, and F'(t) +v(0)3() <0 ae. t> 0.
0

Then b (given by (4.8)) 1s completely positive and satisfies (Hy), and k
associated with b in (2.1) satisfies k € L}(R™ : R) with

(4.11) /:O k(T)dr = [wa + ) +B],

a(oo)

where 8 = [° B(t)dt, 7 = I5°A(t)dt. Moreover, b ¢ L'(RY;R) and
b € LY(RT R).

Now we give the result of applying Theorem 3.2, combined with
Lemma 4.1, to the heat flow problem (4.1) with &9 = 1 and ¢p = 1.
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THEOREM 4 2 Let the assumption of Lemma 4.1 be satisfied. Let
up € L?(0,1), p € L. (R*:L%(0,1)) Let the assumption (4.3) be
satisfied and let k, F, b, f be defined by (2.1), (2.2) and ({.8). Suppose
that g satisfies (Hy) and g € L'(R"). Let A = 8¢, where ¢ 15 defined
m (4.7).

If, in addition, B € L}RY), and p = py + po (where py €
L®(R*; L*(0,1)) and there emsts 4> € L2(0,1) such that lims oo |61 (t)—
12 (8 22¢0,1) = 0, and where py € LE(R*; L2(0,1)) for some p > 1),
then equation (4.10) has a unique generalized solution u such that con-
verges strongly in L2(0,1) ast — oo to the element u™ € L*(0,1); u™
18 the unaque solution of the limit equation Au®™ = F'*°, where

7 o0
F = pPl 1+ —— “=/ t)dt.
. ( ‘7(00))’ K 0 1)
I particular, if pu3° = 0, then v*=° = 0.

PrRoOF The result follows from the last statement of Theorem 3.2
and the proof of [5, Theorem 4.1}

REMARK 2 Theorem 4.2 is also an improvement of {5, Theorem
4.1, 3] in the case that g = 0.
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