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STRONG CONVERGENCE OF SOLUTIONS OF 
NONLINEAR VOLTERRA

EQUATIONS IN BANACH SPACES

Jong Soo Jung

Abstract The strong convergences of solutions to a nonlinear Volterra 

equation are studied m Banach space As an application, a nonlinear 

heat flow in a homogeneous bar of unit length of a material with mem

ory is investigated

1. Introduction

Let X be a real Banach space and let A be a m-accretive operator 
in X. We shall consider the strong convergences as t —> oo of solutions 
to abstract nonlinear Volterra equation 

(Vb.gj) M(t)+J b(t—s)(厶tt(s)十g(s)it(s))ds 3 f(t), t e R+ = [0, oo) 

where b : R+ T ]虬 g : IR+ t and f : R+ T X are given, and the 
integral is taken in the sense of Bochner.

The asymptotic behavior of solutions of (Vb&j) has primarily been 
studied in the case that g 三 0. See [2, 4, 5, 10, 11, 13, 14, 15, 19]. In 
particular, Kato [15] investigated the “unbounded behavior” of solution.
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u(t) of (Vb,oj), that is, the behavior when u(t) is allowed to be un
bounded, and improved the results of due to Clement [4] and Clement 
and Nohel [티 for the convergence of the solution u(t) of (Vb,oj) itself 
as t oo. The unbounded behavior of the solution u(t) of (Vb,gj) 
was given in [1, 12].

In this paper, we study the strong convergence of the solution u(t) 
of (Vb,gj) itself as t —> oo in connection with the results of Clement [4], 
Clement and Nohel [5] and Kato [15]. An application of the physical 
problem is also investigated. Our study can be viewed as an attempt 
to extend earlier corresponding results obtained in [4, 5, 15] in the case 
that g 三 0.

2. Preliminaries

Let X be a real Banach space with norm || • and dual (X、|| - ||*)・ 

The duality pairing between X and X* will be denoted by (•技).Let A 
be a set-valued operator in X with domain Z)(A) and range R(A). A 
is said to be accretive if [92 — — @l]+ N 0 for € Ax^ i = L 2,
where [?/,x]^ = lim사‘o(||% +入训 — ||x||)A-1 for x, y E X. We say that A 
is m-accretive if it is accretive and R(I + AA) = X for all A > 0, where 
I stands for the identity on X. If A is m-accretive, one can define 
its Yosida approximation A\ by A\ = A-1(I —丿入)，with J\ = (I + 
AA)-1, A > 0. Also recall that 난le Yosida approximation A\ (A > 0) of 
a m-accretive operator A is strictly accretive; i.e., [A\x—A\y,x—y]^. > 
0 for £ X、where [^/, x]_ = lim서、0(|恤 + 入初| — ||께)시 for 工)y £ X. 
(cf. [6, 19]).

As in. [1], we assume throughout this paper that A is an m-accretive 
operator on X and consider equation (Vb,g,f) under the following min
imal assumptions:

(Hb) be ACZoc(R+;R), 3(0) = 1, b' e BI4OC(R+;R),

(%) 5€C(R+;R+)

(H/) f € W拦熊+; X), /(0) € D{Aj.
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Here Z>(A) is the closure of D(A). According to [1, 티 under these 
assumptions, the equation (V^j) is (a.e on R+) equivalent to

(E) 뾰 +秦 * u)(t) + Au(t) + 3 fc(t)/(0) + F(t),
at dt

with *u(0) = f(0). Here * denotes the convolution k * z(t) = J* k{t — 
s)2(s)ds, k satisfies

(2.1) &(c) 4~ (fc * b)(t)= 1, t > 0

and F is (a.e on R+) given by

(2^2) 即) = /0 +侬*/如).

Note that (2고) can be rewritten 脆左 + ¥ * k — 一矿 so tteit. by __(H^). k 
is uniquely determined in BVJOC(R+;R). It also follows (see (H/)) that 
F € £}g(lR+；X)・ The strong solutions are considered as functions in

X)p]C(R+; D(A)) for which the equations (Vbqj) and (E) 
hold a.e t € A function u E C(R+; Z)(A)) is said to be a generalized 
solution of the equation (V|>j5)/) if lim사o也x = 口 in C([0,T];X) for 
any 0 < T < exo, where u\ is the strong solution of the approximating 
equation (V시、g,f) (equivalently, (E^)) in which A is replaced by the 
Yosida approximation A\ for each X > 0 (cf. [1, 6, 8]).

To study the convergence of generalized solutions of (V^j), we 
need the concept of a complete positivity of the kernel b. This concept 
is defined as follows (cf. [5, 15]). For b e L|OC(1R+; R), define s(b) and 
r(b) € £；g(IR+;IR) by the equations

(2.3) s(6)(t) + b * s(b)(t) = 1

(2.4) r(6)(t) + b * r(6)(t) = 6(t)

respectively. We say that b is completely positive on if s(Ab) and 
r(A&) are nonnegative on IR+ for every A > 0. It is well-known [2, 
5] that if (H" is satisfied and fc, defined by (2.1), is nonnegative 
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and nonincreasing on R-*-, then the kern시 b is completely positive 
on Furthermore, in this case b satisfies 0 < b(t) < 1 for i > 0, 
and lim^oo &(t) = 6(oo) exists with 6(oo) = (1 + fc(s)ds)-1 if 
k e £1(IR+;Ir] and 6(oo) = 0 if k £ LX(R+;1R). It follows from this 
fact that b(8)> 0 if and only if k E L1(R+;R). Also, in this case,

Finally, we recall the following important property of completely 
positive kernel.

Proposition 2 1 [11, 1 이 Let b be completely positive and w € 
W扫(IR+;X). Then fc*w and k* ||w|| are locally absolutely continuous 
and differentiable a.e. on IR+. Furthermore,

(2.5) *(k*w)(t),s(t) 之尔“시阿时

CLL + Cll/

for almost all t > 0.

3. Main results

Now, we study the convergence of solutions 7z(i) of (V^j) itself as 
t —> oo.

First, we have the following main result along with a slightly differ
ent method from that of result of Kato [15] in the case that g 三 0.

THEOREM 3 1 Let (H^), (Hp) and (Hy) be satisfied and let F be 
associated to f by (2.2). Suppose that b completely positive. Let 
b € L1(R+; R) and let g E £L(R+). Then for the generalized solution 
u(Vb,gj),

W(t) - 峪|| Y 迫 一 s)ds)||uo- 7产||

(3.1) — f b(t — s)^(s)||?z(s) — ti°°||ds
Jo

+ [ b(t - s)[F(s) - F°°^(s) - u°°]^ds, 
Jo
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where w°° = + bF°°)} b = f^° b(t)dt > 0 and F°° E X.
In particular, let F = 一咒 +形.Suppose either that F\ E L°°(R4*; X) 

and lim—ooFi。)= F°° or that Fx — F°° e £P(R+;X), 1 < p < oo; 
and suppose that 形 € £'(IR+;X) + ZK(IR+;X), 1 < p < oo. Then 
limi8 u(t) = u°°.

Proof Since A\ is m-accretive, there exists a G X such that 
遊。=a。+ bF°°. The m-accretiveness of A guarantees that 

lim사qz农。= u°°. Let u\ be a strong solution of (V入b,gj) Then, by 
strictly accretiveness of，入 and the inequality (2.5), we have

o < [Axux(t) - -傾]_

=~4«A(i) 一 * wA)(t) - g(t)(ux(t)—成。)

(.1/1/ Ctrl/

+ k(t)(UQ―從。)+-F(t)—亍(地)—成。)—F°°yux(t)—诚孔—
b

< - (土岫)- 団 + k * 腿' - 聞(圳 +g(이住 - 诚。II)

+ (柏)一f)l!n° 一傾卩+【」叩)-卩8,西&)-伏]+ 

and hence

瓦 腿0)-竣邛+ k *血入-七負佔)+g(圳怔入。)-姣II
(3.2) L

<(的)-=J 11% - 傾 II + 成。)-殆。3仃)-«?] + ■

Define, for fixed A > 0,

心)= llwn-姣 ll-ll如一傾 II,

洲)=- = 11^0 - + [F(C - F°°,ux(t)-，状。]+ - g@)||")—农II
b

and

(3.3) V(t) = x{t) + (fc * x)(t).
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Then 洌0) = 0 and
(3-4)
京t、)=舟应(»頌，II+膈应-诚。11(圳-引圳阮—破即V g)・ 
at at

Using (2.1) (or k + k^bf = 一b‘) and means of the variation of constants 
formula together with (3.3), we obtain

(3.5) x(t) = W(t) + 0 * 物(t) = W) + 丄 b'(t - s)©(s)ds, t > 0.

An integration by parts shows that (3.5) is equivalent to

(3.6) x(t) = ( b(t — s)7〃(s)ds.
Jo

Since fe > 0, we-deduce from (3.4) and (3.6) that

x(t) < ( b{t — s)9(s)ds；

~ Jo
and hence we obtain
(3-7) 七

-傾II - II血-农4 -1(£ b(s)ds) 11% - 奴II

+ [ b(t - s)[F(s)-F°°,ux(s) - u^]+ds
Jo

_ L b(、t — s)g(s)心s) - 遮 ||ds.

Letting A J,0 in (3.7), we obtain(3.1).
For the proof of the last assertion, since J* b(t — s)g(s)ds > 0 for t > 

0, it is enough to show that either if limt—oo 지① = 7/°° or if y — y°° € 
〔p(]R+;X), 1 < p < oo, then lim^oo b(t 一 s)|g - t/°°|j(s)ds = 0. 
But one can easily check these facts since b € £'(IR+;lR)and 6(00) = 0.
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THEOREM 3 2 Let (Hz>), (Hg) and (H/) be satisfied and let F be 
associated to f by (2.2). Suppose that b is completely positive and that 
there exists an a; > 0 such that A — uI is accretive m X. Let r(b), s(b) 
be defined by (2.3), (2.4), respechvely^ and let g E £'(IR+). Then, for 
the generalized solution u of

T(3b)(T)dT I ||w0 - w°°||

(3-8) 1 尸-]Qr^t-rMr)Mr)-U-\\dT

+ / r(wfe)(t - t)[F(t) 一 F°°, iz(t) 一 u°°]+dT, 
Jo

and

||讯"一妒印+*：*他一口8|世)

V (1 + / 北(丁)d丁 一 3 J s(3b)(T)d丁)血0 一

(3.9) ft
- / s(M)(Z-Cg(丁)II이")-#이I心

Jo
+ [ s(a;b)(t — r)[F(r) - F°°,w(t) - w°°]+dT

Jo

where F°° € X and u°° %s the unique element m X satisfying AvP° 9 
F°°.

In partzcular, let F = F】_ + 貝> Suppose either that b £ Ll (R+; R) 
and Fi e 底+；x)and 血乌—。。列(。—F°° or that k e L1(R'I-;R)
(this implies b £ L1^)) - F°° e 乙p(IR+;X), 1 < p < oo;
and suppose that 形 E 乙L(IR+;X) + £?(IR+;X), 1 < p < oo. Then 
linit-j-oo u(t) = u°°.

Proof Let u\ be a strong solution of (V入毎gj) and u\ be the one 
corresponding to &o and /. Since A~ujI is accretive,厶入 一& 6 =丄」如 



78 JONG SOO JUNG

is (strictly) accretive. Thus, by the inequality (2.5), we have

可阮\(7)- 疝入(T)|| < [&皿(丁)- 山必⑺，也X(丁) - WA(T)]_

< -茶[应⑺ - M(7)|| + k* ||wa - wa||(t)

+ g⑺IS⑺一，必⑺II]
+ fc(7-)H - U0\\ + 网7)- F(T),«X(T)-必]+ .

Set a(t) = 으II也x(Z)— &入(%)||. Then it follows that
(3.10)

q(t) +k* a(r) < 一 (g(T)+ d)|"O -
+ [F(r) 一 F(r), ux(r) 一 &入 W a.e. t e R+-

Now to show (3.8), observe that b+k*b = 1 and r(a>b)+a)b*r(ub) = cub 
yield the relation r(LL>b) + k* r(cjfe) = w(l— 1 * 7•(尻)). Since t(나)) > 0 
(by completely positivity of b), we multiply (3.10) by r(u>b)* to obtain
(3.11) 七
|"0) — M(圳I < - y r(3b)(丁)) II«0 一 &에

+ (1 - f)，(场)* 腿-wA||(i)

~ [ r (灵用- 7为⑺应⑺-板⑺旧丁

Q Jo

T——/ r(cuZ))(t - r)[F(r) - F(t),wa(t- - &人(丁)]+打・ 

3 Jo

Since 1 — 으 = 了수最;, letting A | 0 in (3.11) yields

||w(i)-机圳I < (1 一 / r(<M)(T)d7)||u0 - &o||

[，(两)(£ 一 -r)^(T)||u(r) 一 u(r)\\dT
3 Jo
1/M 八

H——/ r(3b、)(、t - t)[F(t) - F(t),u(t) 一 u(t)]+(1t 
3 Jo 
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where & is a generalized solution of (V5 g y). Thus, in particular, if 
Au°° 3 F°°, we obtain (3.8).

Next, to prove (3.9), observe that b+k^b = 1 and s(灵)+3*$(灵)= 

1 implies s(3b) + k * (灵)= — 3* s (灵). Since s(3b) > 0 (by
completely positivity of 6), we multiply (3.10) by s(3b)* to get
(3.12)

—&人(圳I+fc* ii^a 一 mi 世)一 * im 入 一 mii。)

< fl + / 矶丁)一 3 [ (丁)d丁) |商)一n)||
\ JQ JQ J

ftf s(灵)* \\ux — UA||(O - / s(3b)(t - t)^(t)||ua(t)
丄十AU? Jo

-uA(T)||dr+ [ s(w6)(i - t)[F(t) - F(t),ux(t) - ux(r)]+dT.
JO

Then, letting 入、' 0 m (3.12), we have

w(t)- &(圳I+氏 * w - 에(E)

M (1 + / k(丁)d丁 一 3 / s(sb)(了)d丁) I筋)一 &°||

- [$(灵冷-丁)9(丁) g(丁)-&⑺]|打

Jo

+ / s(灵)(t 一 t)[F(t) 一 F(t),w(t) — tz(T)]+dr.
丿0

In particular, if Au°° B F°°, we obtain (3.9). Since

[- t)^(t)||w(t) - v^Wdr > 0 
o

and
/ s(cjd)(t - 7-)^(r)||w(r) - u°°\[dr > 0 for t>Q, 

Jo
the last statement follows from the fact that 迁 b £ L1 (R+;R.), then 
for every u; > 0, s(cu&)(t) = 0 and f^° r(ajb)(r)dr = 1 ([5, 
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Proposition 2.1]). Note also 나Lat k G 丄1(収+; 底) implies b 牛 Ll(R+;R) 
and then

3 I (r)dr = —；一- = 1+1 k(r)dr.
Jo b(8) Jo

Remark 1
(1) Theorem 3.1 is an improvement of Theorem 2 of Clement [4], 

Theorem 3.2 of Clement and Nohel [5] and Theorem 3.1 of Kato [15] 
in the case that g 三 0.

(2) Theorem 3.3 in [5] and Theorem 3.2 in [15] is also a special case 
of Theorem 3.2 if g 三 0.

(3) It follows fi?om Theorem 3.2 that if A is a strongly m-accretive 
operator, then the estimates of convergence can be obtained (here A~~l0 
is not assumed bounded compact and X is arbitrary in comparison with 
[21]). Some other strong convergence results were obtain^l in [13, 14] 
in the case that g 三 0.

4. An example

In this section, as in [1, 5, 19], we consider a nonlinear heat flow in 
a homogeneous bar of unit length of a material with memory.

Let u(tyx\ and 卩(t)x) denote, respectively, the tem
perature, internal energy, heat flux, and external heat supply at time 
t and position x (—8 < t < oo, 0 < x < 1). Let the ends of the bar 
at x — 0 and n = 1 be maintained at zero temperature. For simplicity 
and without loss of generality let the history of u be prescribed as zero 
when t < 0 and 0 < a: < 1. The equation satisfied by u is derived from 
the assumptions that in such materials the internal energy e and the 
heat flux q are functionals of u and of the gradient of u respectively 
(rather than functions of u and ?奴).Specifically, according to the the
ory developed by, e.g., Gurtin and Pipkin [9], Nunziato [2이 for heat 
flow in materials of fading memory type, we assume that e and q are 
taken respectively as the functionals
(心) 七 七

e(tyx) = bQU(t,x) + / /?(£ — s)u(s^x)ds + I — s)g(s)«(s,%)ds, 
Jo Jo



STRONG CONVERGENCE OF SOLUTIONS 81

(4.2) 9仏£)= 一(浏기&•(私*)) + / Mg — s)b(d(s輝))ds,
Jo

for t > 0 and 0 < x < 1.
Here &o > 0, co > 0 are positive constants and the functions 

月，了 ： 1R+ T IR are given sufficiently smooth functions called the 
internal energy and heat flux relaxation functions^ respectively. The 
given function. <t is a real function satisfying

(4.3) a G 丄 <r(0) = 0, "'($) > Po > 0, 5 6 jR,

for some po > 0, a(t) — co — y(s)ds, and g E C(IR+;IR十).In 
the physical literature the relaxation functions /3, 7 are usually taken 
as finite linear combinations of decaying exponentials with positive 
coefficients. For physical reasons (see [5], 卩이)〉we should require at 
least that 疗，7 W and

广8 广8

如 + / (3(t)dt > 0 and co — I 7(t)dt > 0. 
人 Jo

The law of balance of heat requires that the equation = —qx + 〃 (= 
—divq + 卩) 아iould hold. If = %(云)(0 < a: < 1) is the initial 
temperature distribution m the rod, we obtain, in view of (4.1), (4 2) 
and the assumption that the temperature at the ends of the rod is 
zero, the following initial-boundary value problem to be satisfied by 
the temperature u:

3
—\bou(t,x) + (/?* w)(^,2；) + (a*gu)(t,x)]

=Coo-(wx(t, x))x - (7* o-(ux)x)(t, x) + M(i,时， 

(44) 0 < t < 00, 0 < a: < 1,

0) = W、1) = 0, £ > 0,
每((槌)=嚮)(游〉0 < rr < 1.

We remark that if the history of u for t < 0 is not zero, the integrals in 
(4.1) and (4.2) range over the interval (—00, t) (rather than (0,t)), and 
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the resulting equation corresponding to (4.4) would have additional 
known forcing terms stemming from the integrals over (—oo,0) in (4.1) 
and (4.2).

As in [L 5〉20], we transform this initial-boundary value problem to 
a Vblterra integral equation in the space X = L2(0,1). Let

(4.5) G(t, x) = uq(x) + / 卩(s)x、)ds, 
Jo

t > 0, 0 < x <17

and note that

cqcf(ux^x -- 丁 * =百’(a * 虹)Q.

Then (4.4) with 棚=1 and co = 1 (without loss of generality) leads to 
the equation

(4.6) u + + (Au + gu) = G, £ > 0, 0 < x < 1.

The nonlinear operator A : D(A) U X T X is defined by Au = 
—together with the boundary conditions w(t,0) = w(t, 1)三 0 
and

D(A) = {w e H济(0,1) : cr(ux)x e X}.

It is well known that if assumptions (4.3) are satisfied, then. A = d<f>, 
where <j) : L2(0,1) -» (—00, co],

(4-7) 扒 y) = l/0 ，dr)，)')

I +00 otherwise,

where W(z) = Thus © is convex, lower-semicontinuous and
proper on L2(0,1) ( in fact, 8(9) > 0), and A is maximal monotone 
and hence m-accretive on X (see Lemma 2.3 in [1 이 (cf. [3])).

Let r(/3) denote the resolvent kernel of (3 (i.e., r(3) + 0*尸(/3) = /3 ). 
Clearly, if E then r(/3) e £机(吹+) (at least). Next, define
b : —> R and f : R+ X by

(4.8) b = a, — r(/3) * c、
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and

(4.9) 丁 = G —

respectively. Then the variation of constants formula shows that (4 6) 
is equivalent to

(4.10) u + b^ (Au + gu) = / (= % + 1 * (r — r(/3) * /i —如質«3))))

which is an equation of the form (*,g
Now, we can apply the theory developed in Section 3 to discuss the 

strong convergence of the generalized solution of (4.10) (equivalent to 
the heat flow problem (4.4) with 備 = 1 and co = 1). We assume 
that uq E L2 (0,1) and that the forcing function 卩 E 说)。(眠*；乙"Q 1)) 
Then, by (4.5), (4.9), and since the resolvent of (3 satisfies r(/3) G 
L負c(R+) under the condition (3 E 一자~(眠+), it is easily seen that f e

(IR+; £으(S1)) under same cq표dition. Also note that 2?(A) is dense 
in X, so that all of (H/) is satisfied. If moreover, we take (H?,), (Hg) 
to hold, then (4.10) has a unique generalized solution u on R+.

Before giving the convergence result for (4.10), we now state a lemma 
which is essentially [5, Lemma 4.2].

Lemma 4 1 Let P be bounded^ nonnegative, nonincreasing and con
vex on Let 7 be positive^ nontncreasmg^ log-convex, and bounded 
on R-1-. Suppose that

广8
a(。。)— 1 — / > 0, and 叭t) + 7(0)/3(f) < 0 a.e. t > Q.

Jo
Then b (given by (4・8)) zs completely positive and satisfies (Hb)} and k 
associated with b in (2,1) satisfies k € L1(R.-h : R) with

(4U) 轮)打=[洽户(1*) +危

where 0 = /3(t)dt7 7 = y(t)dt. Moreover, b £ £〔(IR+;IR) and
bl e 乙

Now we give the result of applying Theorem 3.2, combined with 
Lemma 4.1, to the heat flow problem (4.1) with &o = 1 and co — 1.
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THEOREM 4 2 Let the assumption of Lemma /.I be satisfied. Let 
uq € 乙2(o,i),卩，€ &oc(R+； £2(0,1)) Let the assumption (4-3) be 
satisfied and let k, F, b, f be defined by (2.1), (2,2) and (人8)、Suppose 
that g satisfies (Hg) and g 6 L1(]R+). Let A = g, where © zs defined 
m (4.7).

If, in addition, (3 e L1(R+), and 〃 =内 + #2 (where 卩丄 € 
£8(r+；£2((),i))there exists /z°° € L2(0,1) such that limt-^oo ||mi(0~ 
M°°(0IIl2(o,i) = 0, and where 总 € LP(R+; L2(0,1)) for some p > 1), 
then equation (4」0) has a unique generalized solution u such that con
verges strongly in L2(0,1) as t oo to the element u°° € L2(0,1); vP° 
is the unique solution of the hmzt equation Aw°° = P00； where

尸2=康—

T t • 1 • f, 广、 • v ，、“<■■、 ，、m paruciuar, %j /ip = u, znen = u.

Proof The result follows from the last statement of Theorem 3.2 
and the proof of [5, Theorem 4.1].

Remark 2 Theorem 4.2 is also an improvement of [5, Theorem 
4.1, 3] in the case that g 三 0.
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