AN EXTENDED THEOREM FOR GRADIENTS AND SUBGRADIENTS

Hyang Joo Rhee*

Abstract

In this paper, we introduce certain concepts which we will provide us with a perspective and insight into the problem of calculating best approximations. The material of this paper will be mainly, but not only, used in developing algorithms for the onesided and two-sided sided approximation problem.

1. Introduction

We first fix some notation. For a set B, Σ a σ-field of subsets of B, and ν a positive measure defined on Σ, i.e., $\nu(E) \geq 0$ for all $E \in \Sigma$. By $L^{p}(B, \nu), 1 \leq p \leq \infty$, we denote the set of all real-valued ν-measurable functions f defined on B for which $|f|^{p}$ is ν-integrable over B. We consider two functions of $L^{p}(B, \nu)$ as equivalent if they are equal ν a.e.. Under this convention $L^{p}(B, \nu)$ with norm

$$
\begin{aligned}
\|f\|_{p} & =\left(\int_{B}|f(x)|^{p} \mathrm{~d} \nu(x)\right)^{\frac{1}{p}} \\
& =\left(\int_{B}|f|^{p} d \nu\right)^{\frac{1}{p}}
\end{aligned}
$$

is a normed linear space and in fact a Bancch space.
Let $L^{\infty}(B, \nu)$ is defined analogously with norm

$$
\|f\|_{\infty}=\operatorname{ess} \sup _{x \in B}|f(x)|
$$

where the ess sup is the infimum of all real constants c for which $|f(x)| \leq$ c, ν a.e.. Then $L^{\infty}(B, \nu)$ is also a Banach space. We are interested in the case $p=1$. If $p=1$, the dual space is not always given by this

Received April 12, 2011; Accepted June 01, 2011.
2010 Mathematics Subject Classification: Primary 41A28, 41A65.
Key words and phrases: gradient, subgradients.
This work was completed with the support by a fund of Duksung Women's University 2010 .
equality. However we shall assume that ν is σ-finite, in which case we necessarily have

$$
L^{1}(B, \nu)^{*}=L^{\infty}(B, \nu)
$$

Let S be a n-dimensional subspace of $L^{1}(B, \nu)$ and we choose and fix a basis $s_{1}, s_{2}, \cdots, s_{n}$ for S. For each $f_{j} \in L^{1}(B, \nu), 1 \leq j \leq \ell$, set $F=\left\{f_{1}, f_{2}, \cdots, f_{\ell}\right\}$ and defined by

$$
M(a)=\max _{1 \leq j \leq \ell}\left\|f_{j}-\sum_{i=1}^{n} a_{i} s_{i}\right\|_{1}
$$

where $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \mathbb{R}^{n}$.
Before proving the main Theorem, we need to pursue some technical facts, that M is continuous, convex and $\lim _{\|a\| \rightarrow \infty} M(a)=\infty$, where $\|\cdot\|$ is any norm on \mathbb{R}^{n}. By A. M. Pinkus[4], we know that $H(a)=\left\|f-\sum_{i=1}^{n} a_{i} s_{i}\right\|$ is continuous, almost everywhere differentiable, convex and $\lim _{\|a\| \rightarrow \infty} H(a)=\infty$. From general considerations it follows that M is continuous, almost everywhere differentiable, convex and $\lim _{\|a\| \rightarrow \infty} M(a)=\infty$. Thus the unconstrained problem of determining a best approximation to F from S is equivalent to that of finding the minimum of a given convex function M. The study of this problem leads us to the important concepts of gradients and subgradients. The subgradients of M at a are defined as follows:

Definition 1.1. Let M be as above and $a \in \mathbb{R}^{n}$. A vector $g \in \mathbb{R}^{n}$ is said to be a subgradient to M at a if

$$
M(b) \geq M(a)+(g, b-a)
$$

for all $b \in \mathbb{R}^{n}$ where (\cdot, \cdot) is the usual inner product of vectors in \mathbb{R}^{n}. We let $G(a)$ denote the set of subgradients to M at a.

Each elements of $G(a)$ corresponds to a supporting hyperplane to M at a. Since M is convex, $G(a)$ is non-empty. Furthermore, the set $G(a)$ is bounded, closed and convex for each $a \in \mathbb{R}^{n}$.

Definition 1.2. Let M be as above and $a \in \mathbb{R}^{n}$. If $G(a)$ is a singleton then this singleton is called the gradient to M at a.

Thus a gradient to M exists at a if and only if there is a unique supporting hyperplane to M at a.

Let us now deduce the usual simple criterion for determing when a^{*} is a minimum point of M. Such a minimum point exists.

Lemma 1.3. Let M be as above and $a^{*} \in \mathbb{R}^{n}$. Then a^{*} is a minimum point of M if and only if $0 \in G\left(a^{*}\right)$.

Proof. If a^{*} is a minumum of M, then $M(b)-M\left(a^{*}\right) \geq 0$ for all $b \in \mathbb{R}^{n}$. Thus $M(b)-M\left(a^{*}\right) \geq\left(0, b-a^{*}\right)$ for all $b \in \mathbb{R}^{n}$. So $0 \in G\left(a^{*}\right)$.

Conversely, if $0 \in G\left(a^{*}\right)$, then $M(b)-M\left(a^{*}\right) \geq\left(0, b-a^{*}\right)=0$ for all $b \in \mathbb{R}^{n}$. Thus $M(b) \geq M\left(a^{*}\right)$ for all $b \in \mathbb{R}^{n}$.

2. Gradients and subgradients

Since $G(a)$ is a compact convex set, it is uniquely determined by its extreme points. These extreme points are related to one-sided directional derivatives as follows. Let W be an arbitrary subset of \mathbb{R}^{n}. A ray W is the union of the origin and the various rays(half-lines of the form $\{\lambda y \mid \lambda \geq 0\}$).

Proposition 2.1. Let M be as above and $a \in \mathbb{R}^{n}$. For each $d \in \mathbb{R}^{n}$

$$
\lim _{t \rightarrow 0^{+}} \frac{M(a+t d)-M(a)}{t}=M_{d}^{\prime}(a)
$$

exists. Furthermore,

$$
M_{d}^{\prime}(a)=\max \{(g, d): g \in G(a)\}
$$

Proof. Set

$$
r(t)=\frac{M(a+t d)-M(a)}{t}
$$

We verify that the above limit exists by proving that $r(t)$ is non-decreasing and bounded below on $(0, \infty)$.

Let $0<s<t<\infty$. Since $\frac{s}{t} \in(0,1)$ and M is convex,

$$
M(a+s d)=M\left(\frac{s}{t}(a+t d)+\left(1-\frac{s}{t}\right) a\right) \leq \frac{s}{t} M(a+t d)+\left(1-\frac{s}{t}\right) M(a)
$$

Thus

$$
t[M(a+s d)-M(a)] \leq s[M(a+t d)-M(a)]
$$

that is, $r(s) \leq r(t)$. Now, take any $g \in G(a)$. By definition,

$$
M(a+t d)-M(a) \geq(g, t d)=t(g, d)
$$

Thus $r(t) \geq(g, d)$ for all $t \in(0, \infty)$. Since $r(t)$ is bounded below, the desired limit exists.

The above also confirms that $M_{d}^{\prime}(a) \geq(g, d)$ for every $g \in G(a)$. Since $G(a)$ is compact, we therefore have

$$
M_{d}^{\prime}(a) \geq \max \{(g, d): g \in G(a)\}
$$

It remain to prove that equality holds.
Let $W_{1}, W_{2} \subset \mathbb{R}^{n+1}$ be defined by

$$
\begin{aligned}
& W_{1}=\left\{(b, y): b \in \mathbb{R}^{n}, y \geq M(b)\right\} \\
& W_{2}=\left\{\left(a+t d, M(a)+t M_{d}^{\prime}(a)\right): t \geq 0\right\}
\end{aligned}
$$

Since M is convex, W_{1} is convex and by definition, W_{2} is ray. Since $r(t) \geq M_{d}^{\prime}(a)$ for all $t>0, W_{2}$ contains no point in the interior of W_{1}. However $(a, M(a)) \in W_{1} \bigcap W_{2}$. Therefore, there exists a $\tilde{g}=\left(g, g_{n+1}\right) \in$ $\mathbb{R}^{n+1} \backslash\{0\}$ such that

$$
(g, b-a)+g_{n+1}(y-M(a)) \geq 0 \geq(g, t d)+g_{n+1} t M_{d}^{\prime}(a)
$$

for all $b \in \mathbb{R}^{n}, y \geq M(b)$, and $t \geq 0$. If $b=a$, then $g_{n+1}(y-M(a)) \geq 0$ for all $y \geq M(a)$ which implies that $g_{n+1} \geq 0$. If $g_{n+1}=0$, then $(g, b-a) \geq 0$ for all $b \in \mathbb{R}^{n}$, and so $g=0$. It is a contradiction. Thus $g_{n+1}>0$, set $g^{*}=-g / g_{n+1}$. Then

$$
M(b)-M(a) \geq\left(g^{*}, b-a\right)
$$

for all $b \in \mathbb{R}^{n}$, and

$$
\left(g^{*}, d\right) \geq M_{d}^{\prime}(a)
$$

From the inequality, $g^{*} \in G(a)$. The second inequality implies that

$$
\max \{(g, d): g \in G(a)\}=M_{d}^{\prime}(a)
$$

Based on the above, we call d a descent direction if $M_{d}^{\prime}(a)<0$. We can now discern the germ of an idea behind the construction of algorithms for this problem.

Theorem 2.2. [4] Let S be a subspace of $L^{1}(B, \nu)$ and $f \in L^{1}(B, \nu) \backslash \bar{S}$. Then g^{*} is a best $L^{1}(B, \nu)$ approximation to f from S if and only if

$$
\left|\int_{B} \operatorname{sgn}\left(f-g^{*}\right) g d \nu\right| \leq \int_{Z\left(f-g^{*}\right)}|g| d \nu
$$

for all $g \in S$, where $Z\left(f-g^{*}\right)=\left\{x \mid f(x)=g^{*}(x)\right\}$.
The general plan is to find a good descent direction, and to employ this information in an efficient manner. Let us assume that we can find $G(a)$ or at least a descent direction. We end this paper by identifying $G(a)$.

Theorem 2.3. Let $a \in \mathbb{R}^{n}$. Then $G(a)$ is the set of all vector $g=$ $\left(g_{1}, \cdots, g_{n}\right)$, where
$g_{j}=\int_{Z\left(F-\sum_{i=1}^{n} a_{i} s_{i}\right)} h s_{j} d \nu-\int_{B} \operatorname{sgn}\left(f_{j_{a}}-\sum_{i=1}^{n} a_{i} s_{i}\right) s_{j} d \nu \quad j=1, \cdots, n$ and h is any $L^{\infty}(B, \nu)$ function satisfying $|h| \leq 1 \nu$ a.e. on $Z(F-$ $\left.\sum_{i=1}^{n} a_{i} s_{i}\right)$ with

$$
Z\left(F-\sum_{i=1}^{n} a_{i} s_{i}\right)=\bigcap_{j=1}^{\ell} Z\left(f_{j}-\sum_{i=1}^{n} a_{i} s_{i}\right)
$$

and j_{a} is a subindex of f satisfying $M(a)=\left\|f_{j_{a}}-\sum_{i=1}^{n} a_{i} s_{i}\right\|_{1}$.
Proof. Let $g=\left(g_{1}, \cdots, g_{n}\right)$ be as in the statement. For every $b \in \mathbb{R}^{n}$, it follows from Theorem 2.0.5 that

$$
\begin{aligned}
& (g, b-a)=\sum_{j=1}^{n} g_{j}\left(b_{j}-a_{j}\right) \\
& =\int_{Z\left(F-\sum_{i=1}^{n} a_{i} s_{i}\right)} h\left(\sum_{j=1}^{n} b_{j} s_{j}-\sum_{j=1}^{n} a_{j} s_{j}\right) d \nu \\
& \quad-\int_{B} \operatorname{sgn}\left(f_{j_{a}}-\sum_{i=1}^{n} a_{i} s_{i}\right)\left(\sum_{j=1}^{n} b_{j} s_{j}-\sum_{j=1}^{n} a_{j} s_{j}\right) d \nu \\
& =\int_{Z\left(F-\sum_{i=1}^{n} a_{i} s_{i}\right)} h\left(\sum_{j=1}^{n} b_{j} s_{j}-f_{j_{a}}\right) d \nu \\
& \quad+\int_{B} \operatorname{sgn}\left(f_{j_{a}}-\sum_{i=1}^{n} a_{i} s_{i}\right)\left(f_{j_{a}}-\sum_{j=1}^{n} b_{j} s_{j}\right) d \nu \\
& \quad-\int_{B} \operatorname{sgn}\left(f_{j_{a}}-\sum_{i=1}^{n} a_{i} s_{i}\right)\left(f_{j_{a}}-\sum_{j=1}^{n} a_{j} s_{j}\right) d \nu \\
& \leq \\
& \leq
\end{aligned}
$$

So each g is a subgradient to M at a. Let \tilde{G} denote the set of all such g. Then $\tilde{G} \subseteq G(a)$, and \tilde{G} is both convex and compact. If $\tilde{G} \neq G(a)$, there exists a $g^{*} \in G(a)$ and a $d \in \mathbb{R}^{n}$ for which

$$
(g, d)<\left(g^{*}, d\right)
$$

for all $g \in \tilde{G}$. Thus

$$
\max \{(g, d): g \in \tilde{G}\}<\max \{(g, d): g \in G(a)\}=M_{d}^{\prime}(a)
$$

Let $g \in \tilde{G}$ be as in the statement of the proposition with $h=\operatorname{sgn}\left(\sum_{j=1}^{n} d_{j} s_{j}\right)$ on $Z\left(F-\sum_{i=1}^{n} a_{i} s_{i}\right)$. Then
$(g, d)=\int_{Z\left(F-\sum_{i=1}^{n} a_{i} s_{i}\right)}\left|\sum_{j=1}^{n} d_{j} s_{j}\right| d \nu-\int_{B} \operatorname{sgn}\left(f_{j_{a}}-\sum_{j=1}^{n} a_{j} s_{j}\right) \sum_{j=1}^{n} d_{j} s_{j} d \nu$.
Let us extend $h=\operatorname{sgn}\left(\sum_{j=1}^{n} d_{j} s_{j}\right)$ on $Z\left(f_{j_{a}}-\sum_{i=1}^{n} a_{i} s_{i}\right)$, then by the theorem 2.0.5.,

$$
\begin{aligned}
& (g, d)=\int_{Z\left(f_{j_{a}}-\sum_{i=1}^{n} a_{i} s_{i}\right)}\left|\sum_{j=1}^{n} d_{j} s_{j}\right| d \nu-\int_{B} \operatorname{sgn}\left(f_{j_{a}}-\sum_{j=1}^{n} a_{j} s_{j}\right) \sum_{j=1}^{n} d_{j} s_{j} d \nu \\
& \quad=\lim _{t \rightarrow 0^{+}} r(t) \\
& \quad=M_{d}^{\prime}(a) .
\end{aligned}
$$

This contradicts the above strict inequality and therefore $\tilde{G}=G(a)$.

Note that d is a descent direction if and only if

$$
\int_{B} \operatorname{sgn}\left(f_{j_{a}}-\sum_{i=1}^{n} a_{i} s_{i}\right) \sum_{j=1}^{n} d_{j} s_{j} d \nu>\int_{Z\left(F-\sum_{i=1}^{n} a_{i} s_{i}\right)}\left|\sum_{j=1}^{n} d_{j} s_{j}\right| \nu
$$

This is yet another explanation of Theorem 2.0.5. Also note that M has a gradient at a if and only if $\nu\left(Z\left(F-\sum_{i=1}^{n} a_{i} s_{i}\right)\right)=0$. It is then given by $g=\left(g_{1}, \cdots, g_{n}\right)$ where

$$
g_{j}=-\int_{B} \operatorname{sgn}\left(f_{j_{a}}-\sum_{i=1}^{n} a_{i} s_{i}\right) s_{j} d \nu
$$

$j=1, \cdots, n$.

References

[1] L. Elsner, I. Koltracht and M. Neumann, Convergence of sequential and asynchronous nonlinear paracontractions, Numerische mathematik 62 (1992), 305319.
[2] S. H. Park and H. J. Rhee, Characterization of best simultaneous approximation for a compact set, Bull K. Math. Soc. 33 (1996), 435-444.
[3] S. H. Park and H. J. Rhee, One-sided best simultaneous L_{1}-approximation, J. K. Math. Soc. 33 (1996), 155-167.
[4] A. Pinkus, On L_{1}-approximation, Cambridge Tracts in Mathematics 93, Cambridge University Press, Cambridge-New York, 1989.
[5] H. J. Rhee, An algorithm of the one-sided best simultaneous approximation, K. Ann. Math. 24 (2007), 69-79.
[6] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York, 1970.
[7] A. S. Holland, B. N. Sahney and J. Tzimbalario, On best simultaneous approximation, Letter to the Editer, J. Approx. Theory 17 (1976), 187-188.
[8] H. J. Rhee, Best simultaneous spproximations and one-sided best simultaneous approximations, Doctoral Dissertation, Sogang University, Seoul, 1994.
*
College of Natural Sciences
Duksung Women's University
Seoul 132-714, Republic of Korea
E-mail: rhj@duksung.ac.kr

