JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 24, No. 2, June 2011

AN EXTENDED THEOREM FOR GRADIENTS AND SUBGRADIENTS

Hyang Joo Rhee*

ABSTRACT. In this paper, we introduce certain concepts which we will provide us with a perspective and insight into the problem of calculating best approximations. The material of this paper will be mainly, but not only, used in developing algorithms for the one-sided and two-sided sided approximation problem.

1. Introduction

We first fix some notation. For a set B, Σ a σ -field of subsets of B, and ν a positive measure defined on Σ , i.e., $\nu(E) \ge 0$ for all $E \in \Sigma$. By $L^p(B,\nu), 1 \le p \le \infty$, we denote the set of all real-valued ν -measurable functions f defined on B for which $|f|^p$ is ν -integrable over B. We consider two functions of $L^p(B,\nu)$ as equivalent if they are equal ν a.e.. Under this convention $L^p(B,\nu)$ with norm

$$\begin{split} ||f||_p &= \left(\int_B |f(x)|^p \mathrm{d}\nu(x)\right)^{\frac{1}{p}} \\ &= \left(\int_B |f|^p \mathrm{d}\nu\right)^{\frac{1}{p}} \end{split}$$

is a normed linear space and in fact a Bancch space.

Let $L^{\infty}(B,\nu)$ is defined analogously with norm

$$||f||_{\infty} = \operatorname{ess\,sup}_{x \in B} |f(x)|$$

where the ess sup is the infimum of all real constants c for which $|f(x)| \leq c$, ν a.e.. Then $L^{\infty}(B,\nu)$ is also a Banach space. We are interested in the case p = 1. If p = 1, the dual space is not always given by this

Received April 12, 2011; Accepted June 01, 2011.

²⁰¹⁰ Mathematics Subject Classification: Primary 41A28, 41A65.

Key words and phrases: gradient, subgradients.

This work was completed with the support by a fund of Duksung Women's University 2010.

Hyang Joo Rhee

equality. However we shall assume that ν is σ -finite, in which case we necessarily have

$$L^1(B,\nu)^* = L^\infty(B,\nu).$$

Let S be a n-dimensional subspace of $L^1(B,\nu)$ and we choose and fix a basis s_1, s_2, \dots, s_n for S. For each $f_j \in L^1(B,\nu), 1 \leq j \leq \ell$, set $F = \{f_1, f_2, \dots, f_\ell\}$ and defined by

$$M(a) = \max_{1 \le j \le \ell} ||f_j - \sum_{i=1}^n a_i s_i||_1$$

where $a = (a_1, a_2, \cdots, a_n) \in \mathbb{R}^n$.

Before proving the main Theorem, we need to pursue some technical facts, that M is continuous, convex and $\lim_{||a||\to\infty} M(a) = \infty$, where $|| \cdot ||$ is any norm on \mathbb{R}^n . By A. M. Pinkus[4], we know that $H(a) = ||f - \sum_{i=1}^n a_i s_i||$ is continuous, almost everywhere differentiable, convex and $\lim_{||a||\to\infty} H(a) = \infty$. From general considerations it follows that M is continuous, almost everywhere differentiable, convex and $\lim_{||a||\to\infty} M(a) = \infty$. Thus the unconstrained problem of determining a best approximation to F from S is equivalent to that of finding the minimum of a given convex function M. The study of this problem leads us to the important concepts of gradients and subgradients. The subgradients of M at a are defined as follows:

DEFINITION 1.1. Let M be as above and $a \in \mathbb{R}^n$. A vector $g \in \mathbb{R}^n$ is said to be a subgradient to M at a if

$$M(b) \ge M(a) + (g, b - a)$$

for all $b \in \mathbb{R}^n$ where (\cdot, \cdot) is the usual inner product of vectors in \mathbb{R}^n . We let G(a) denote the set of subgradients to M at a.

Each elements of G(a) corresponds to a supporting hyperplane to M at a. Since M is convex, G(a) is non-empty. Furthermore, the set G(a) is bounded, closed and convex for each $a \in \mathbb{R}^n$.

DEFINITION 1.2. Let M be as above and $a \in \mathbb{R}^n$. If G(a) is a singleton then this singleton is called the gradient to M at a.

Thus a gradient to M exists at a if and only if there is a unique supporting hyperplane to M at a.

Let us now deduce the usual simple criterion for determing when a^* is a minimum point of M. Such a minimum point exists.

352

LEMMA 1.3. Let M be as above and $a^* \in \mathbb{R}^n$. Then a^* is a minimum point of M if and only if $0 \in G(a^*)$.

Proof. If a^* is a minumum of M, then $M(b) - M(a^*) \ge 0$ for all $b \in \mathbb{R}^n$. Thus $M(b) - M(a^*) \ge (0, b - a^*)$ for all $b \in \mathbb{R}^n$. So $0 \in G(a^*)$. Conversely, if $0 \in G(a^*)$, then $M(b) - M(a^*) \ge (0, b - a^*) = 0$ for all $b \in \mathbb{R}^n$. Thus $M(b) \ge M(a^*)$ for all $b \in \mathbb{R}^n$. \Box

2. Gradients and subgradients

Since G(a) is a compact convex set, it is uniquely determined by its extreme points. These extreme points are related to one-sided directional derivatives as follows. Let W be an arbitrary subset of \mathbb{R}^n . A ray W is the union of the origin and the various rays(half-lines of the form $\{\lambda y | \lambda \geq 0\}$).

PROPOSITION 2.1. Let M be as above and $a \in \mathbb{R}^n$. For each $d \in \mathbb{R}^n$

$$\lim_{t \to 0^+} \frac{M(a+td) - M(a)}{t} = M'_d(a)$$

exists. Furthermore,

$$M'_d(a) = \max\{(g, d) : g \in G(a)\}.$$

Proof. Set

$$r(t) = \frac{M(a+td) - M(a)}{t}$$

We verify that the above limit exists by proving that r(t) is non-decreasing and bounded below on $(0, \infty)$.

Let $0 < s < t < \infty$. Since $\frac{s}{t} \in (0, 1)$ and M is convex,

$$M(a + sd) = M(\frac{s}{t}(a + td) + (1 - \frac{s}{t})a) \le \frac{s}{t}M(a + td) + (1 - \frac{s}{t})M(a)$$

Thus

$$t[M(a+sd) - M(a)] \le s[M(a+td) - M(a)]$$

that is, $r(s) \leq r(t)$. Now, take any $g \in G(a)$. By definition,

$$M(a+td) - M(a) \ge (g,td) = t(g,d).$$

Thus $r(t) \ge (g, d)$ for all $t \in (0, \infty)$. Since r(t) is bounded below, the desired limit exists.

Hyang Joo Rhee

The above also confirms that $M'_d(a) \ge (g, d)$ for every $g \in G(a)$. Since G(a) is compact, we therefore have

$$M'_d(a) \ge \max\{(g,d) : g \in G(a)\}.$$

It remain to prove that equality holds.

Let $W_1, W_2 \subset \mathbb{R}^{n+1}$ be defined by

$$W_1 = \{(b, y) : b \in \mathbb{R}^n, y \ge M(b)\}$$

$$W_2 = \{(a + td, M(a) + tM'_d(a)) : t \ge 0\}.$$

Since M is convex, W_1 is convex and by definition, W_2 is ray. Since $r(t) \ge M'_d(a)$ for all t > 0, W_2 contains no point in the interior of W_1 . However $(a, M(a)) \in W_1 \cap W_2$. Therefore, there exists a $\tilde{g} = (g, g_{n+1}) \in \mathbb{R}^{n+1} \setminus \{0\}$ such that

$$(g, b-a) + g_{n+1}(y - M(a)) \ge 0 \ge (g, td) + g_{n+1}tM'_d(a)$$

for all $b \in \mathbb{R}^n$, $y \ge M(b)$, and $t \ge 0$. If b = a, then $g_{n+1}(y - M(a)) \ge 0$ for all $y \ge M(a)$ which implies that $g_{n+1} \ge 0$. If $g_{n+1} = 0$, then $(g, b-a) \ge 0$ for all $b \in \mathbb{R}^n$, and so g = 0. It is a contradiction. Thus $g_{n+1} > 0$, set $g^* = -g/g_{n+1}$. Then

$$M(b) - M(a) \ge (g^*, b - a)$$

for all $b \in \mathbb{R}^n$, and

$$(q^*, d) \ge M'_d(a).$$

From the inequality, $g^* \in G(a)$. The second inequality implies that

$$max\{(g, d): g \in G(a)\} = M'_d(a).$$

Based on the above, we call d a descent direction if $M'_d(a) < 0$. We can now discern the germ of an idea behind the construction of algorithms for this problem.

THEOREM 2.2. [4] Let S be a subspace of $L^1(B,\nu)$ and $f \in L^1(B,\nu) \setminus \overline{S}$. Then g^* is a best $L^1(B,\nu)$ approximation to f from S if and only if

$$\left|\int_{B} sgn(f - g^{*})gd\nu\right| \leq \int_{Z(f - g^{*})} |g|du$$

for all $g \in S$, where $Z(f - g^*) = \{x | f(x) = g^*(x)\}.$

The general plan is to find a good descent direction, and to employ this information in an efficient manner. Let us assume that we can find G(a) or at least a descent direction. We end this paper by identifying G(a).

354

THEOREM 2.3. Let $a \in \mathbb{R}^n$. Then G(a) is the set of all vector $g = (g_1, \dots, g_n)$, where

$$g_j = \int_{Z(F-\sum_{i=1}^n a_i s_i)} hs_j d\nu - \int_B sgn(f_{j_a} - \sum_{i=1}^n a_i s_i) s_j d\nu \quad j = 1, \cdots, n$$

and h is any $L^\infty(B,\nu)$ function satisfying $|h|\leq 1$ $\nu a.e.$ on $Z(F-\sum_{i=1}^n a_i s_i)$ with

$$Z(F - \sum_{i=1}^{n} a_i s_i) = \bigcap_{j=1}^{\ell} Z(f_j - \sum_{i=1}^{n} a_i s_i)$$

and j_a is a subindex of f satisfying $M(a) = ||f_{j_a} - \sum_{i=1}^n a_i s_i||_1$.

Proof. Let $g = (g_1, \dots, g_n)$ be as in the statement. For every $b \in \mathbb{R}^n$, it follows from Theorem 2.0.5. that

$$\begin{split} (g, b-a) &= \sum_{j=1}^{n} g_{j}(b_{j}-a_{j}) \\ &= \int_{Z(F-\sum_{i=1}^{n} a_{i}s_{i})} h(\sum_{j=1}^{n} b_{j}s_{j} - \sum_{j=1}^{n} a_{j}s_{j})d\nu \\ &\quad -\int_{B} sgn(f_{j_{a}} - \sum_{i=1}^{n} a_{i}s_{i})(\sum_{j=1}^{n} b_{j}s_{j} - \sum_{j=1}^{n} a_{j}s_{j})d\nu \\ &= \int_{Z(F-\sum_{i=1}^{n} a_{i}s_{i})} h(\sum_{j=1}^{n} b_{j}s_{j} - f_{j_{a}})d\nu \\ &\quad +\int_{B} sgn(f_{j_{a}} - \sum_{i=1}^{n} a_{i}s_{i})(f_{j_{a}} - \sum_{j=1}^{n} b_{j}s_{j})d\nu \\ &\quad -\int_{B} sgn(f_{j_{a}} - \sum_{i=1}^{n} a_{i}s_{i})(f_{j_{a}} - \sum_{j=1}^{n} a_{j}s_{j})d\nu \\ &\leq ||f_{j_{a}} - \sum_{j=1}^{n} b_{j}s_{j}||_{1} - ||f_{j_{a}} - \sum_{j=1}^{n} a_{j}s_{j}||_{1} \\ &\leq M(b) - M(a). \end{split}$$

So each g is a subgradient to M at a. Let \tilde{G} denote the set of all such g. Then $\tilde{G} \subseteq G(a)$, and \tilde{G} is both convex and compact. If $\tilde{G} \neq G(a)$, there exists a $g^* \in G(a)$ and a $d \in \mathbb{R}^n$ for which

$$(g, d) < (g^*, d)$$

Hyang Joo Rhee

for all $g \in \tilde{G}$. Thus

 $max\{(g,\,d):g\in \tilde{G}\}< max\{(g,\,d):g\in G(a)\}=M_d'(a).$

Let $g \in \tilde{G}$ be as in the statement of the proposition with $h = sgn(\sum_{j=1}^{n} d_j s_j)$ on $Z(F - \sum_{i=1}^{n} a_i s_i)$. Then

$$(g, d) = \int_{Z(F-\sum_{i=1}^{n} a_i s_i)} \left| \sum_{j=1}^{n} d_j s_j \right| d\nu - \int_B sgn(f_{j_a} - \sum_{j=1}^{n} a_j s_j) \sum_{j=1}^{n} d_j s_j d\nu.$$

Let us extend $h = sgn(\sum_{j=1}^{n} d_j s_j)$ on $Z(f_{j_a} - \sum_{i=1}^{n} a_i s_i)$, then by the theorem 2.0.5.,

$$(g, d) = \int_{Z(f_{j_a} - \sum_{i=1}^{n} a_i s_i)} |\sum_{j=1}^{n} d_j s_j| d\nu - \int_B sgn(f_{j_a} - \sum_{j=1}^{n} a_j s_j) \sum_{j=1}^{n} d_j s_j d\nu$$

= $\lim_{t \to 0^+} r(t)$
= $M'_d(a)$.

This contradicts the above strict inequality and therefore $\tilde{G} = G(a)$.

Note that d is a descent direction if and only if

$$\int_{B} sgn(f_{j_{a}} - \sum_{i=1}^{n} a_{i}s_{i}) \sum_{j=1}^{n} d_{j}s_{j}d\nu > \int_{Z(F - \sum_{i=1}^{n} a_{i}s_{i})} |\sum_{j=1}^{n} d_{j}s_{j}|\nu$$

This is yet another explanation of Theorem 2.0.5. Also note that M has a gradient at a if and only if $\nu(Z(F - \sum_{i=1}^{n} a_i s_i)) = 0$. It is then given by $g = (g_1, \dots, g_n)$ where

$$g_j = -\int_B sgn(f_{j_a} - \sum_{i=1}^n a_i s_i) s_j d\nu,$$

 $j=1,\cdots,n.$

References

- L. Elsner, I. Koltracht and M. Neumann, Convergence of sequential and asynchronous nonlinear paracontractions, Numerische mathematik 62 (1992), 305– 319.
- [2] S. H. Park and H. J. Rhee, Characterization of best simultaneous approximation for a compact set, Bull K. Math. Soc. 33 (1996), 435–444.
- [3] S. H. Park and H. J. Rhee, One-sided best simultaneous L₁-approximation, J. K. Math. Soc. 33 (1996), 155–167.
- [4] A. Pinkus, On L₁-approximation, Cambridge Tracts in Mathematics 93, Cambridge University Press, Cambridge-New York, 1989.

356

- [5] H. J. Rhee, An algorithm of the one-sided best simultaneous approximation, K. Ann. Math. 24 (2007), 69–79.
- [6] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York, 1970.
- [7] A. S. Holland, B. N. Sahney and J. Tzimbalario, On best simultaneous approximation, Letter to the Editer, J. Approx. Theory 17 (1976), 187 - 188.
- [8] H. J. Rhee, Best simultaneous spproximations and one-sided best simultaneous approximations, Doctoral Dissertation, Sogang University, Seoul, 1994.

*

College of Natural Sciences Duksung Women's University Seoul 132-714, Republic of Korea *E-mail*: rhj@duksung.ac.kr