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NORMALIZED DUALITY MAPPING AND
GENERALIZED BEST APPROXIMATIONS

Sung Ho Park* and Hyang Joo Rhee**

Abstract. In this paper, we introduce certain concepts which pro-
vide us with a perspective and insight into the generalization of
orthogonality with the normalized duality mapping. The material
of this paper will be mainly, but not only, used in developing algo-
rithms for the best approximation problem in a Banach space.

1. Introduction

Let E be a real Banach space with the norm || · || and let E∗ be the
dual space of E. Denote by < ·, · > the duality product. The normalized
duality mapping J from E to E∗ is defined by

Jx = {x∗ ∈ E∗ :< x, x∗ >= ||x||2 = ||x∗||2}
for all x ∈ E. Hahn-Banach theorem guarantees that Jx 6= ∅ for every
x ∈ E.

A Banach space E is said to be strictly convex if ||x+y
2 || < 1 for all

x, y ∈ E with ||x|| = ||y|| = 1 and x 6= y. A Banach space E is said
to be uniformly convex if limn→∞ ||xn − yn|| = 0 for any two sequences
{xn}, {yn} in E such that ||xn|| = ||yn|| = 1 and limn→∞ ||xn+yn

2 || = 1.
Let S(E) = {x ∈ E : ||x|| = 1} be the unit sphere of E. The Banach
space E is said to be smooth provided

lim
t→0

||x + ty|| − ||x||
t

exists for each x, y ∈ S(E). It is also said to be uniformly smooth if the
limit is attained uniformly for x, y ∈ S(E). It is well known that if E is
smooth, then the duality mapping is single valued. It is also known that
if E is uniformly smooth, then J is uniformly norm-to-norm continuous
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on each bounded subset of E. Some properties of the normalized duality
mapping have been given in [5, 6].

Let E be a smooth Banach space and let E∗ be the dual of E. The
function φ : E ×E → R is defined by

φ(y, x) = ||y||2 − 2 < y, Jx > +||x||2

for all x, y ∈ E, where J is the normalized duality mapping from E to
E∗. It is obvious from the definition of the function φ that

(||y|| − ||x||)2 ≤ φ(y, x) ≤ (||y|| + ||x||)2 (1)
for all x, y ∈ E.

In what follows we recall from [1] some examples for the mapping J
in the uniformly convex and uniformly smooth Banach spaces `p and
Lp, p ∈ (1,∞).
¦ For `p : Jx = ||x||2−p

`p y ∈ `q, x = {x1, x2, · · · },
y = {x1|x1|p−2, x2|x2|p−2, · · · },
p−1 + q−1 = 1.

¦ For Lp : Jx = ||x||2−p
Lp |x|p−2x ∈ Lq, p−1 + q−1 = 1.

In section 2, we define a new orthogonality concept, that is called
a J-orthogonality in a smooth Banach space, by using the normalized
duality mapping which is equivalent to the Birhkoff orthogonality in a
Banach space, and give some basic properties of J-orthogonality in a
smooth Banach space.

In [6], Matsushita and Takahashi gave a characterization of the gen-
eralized best approximation from a closed convex subset of a smooth
Banach space E. In section 3, we find a best approximation to an el-
ement of a smooth Banach space E from a closed subspace of E and
characterizations of the generalized best approximation.

2. J-orthogonality

In this section, we will study a kind of orthogonality by using the
normalized duality mapping. First we will give some results about nor-
malized duality mapping.

Proposition 2.1. [2] (a) Jx is convex and σ(E∗, E)-closed. J(αx) =
αJx for all α ∈ R.

(b) For each x ∈ S(E), Jx is a weak* compact convex extremal subset
of S(E∗) = {x∗ ∈ E∗ : ||x∗|| = 1}. In particular, Jx has extreme points,
each extreme point of Jx is an extreme of S(E∗), and Jx is the weak*
closed convex hull of its set of extreme points.
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(c) J is norm-weak* upper semi-continuous. That is, if x0 ∈ E and
W is a weak* open sets with Jx0 ⊂ W , then there exists an open
neighborhood U of x0 such that Jx ⊂ W for all x ∈ U .

(d) J is a map if and only if E∗ is strictly convex. In particular,
J = I if E is Hilbert.

It is natural to ask under what conditions J is linear. It turns out
that this completely characterize a Hilbert space.

Definition 2.2. A selection for the normalized duality mapping J
is a function s : E → E∗ such that s(x) ∈ Jx for every x ∈ E. That is,
||s(x)|| = ||x|| and < x, s(x) >= ||x||2.

Theorem 2.3. [2] The following statements are equivalent for a Ba-
nach space E.

(1) E is a Hilbert space.
(2) Every selection for J is linear.
(3) There exists a selection for J which is linear.
(4) J is “additive”, i.e., J(x + y) = Jx + Jy.
(5) J is “sub-additive”, i.e., Jx + Jy ⊂ J(x + y).

Proposition 2.4. [6] If E is a strictly convex and smooth Banach
space, then for any x, y ∈ E, φ(y, x) = 0 if and only if x = y.

Proof. It suffices to show that if φ(y, x) = 0, then x = y. By (1), we
have ||x|| = ||y||. Then

< y, Jx >= ||y||2 = ||x||2 = ||Jx||2.
By the definition of J , we have Jx = Jy. Since J is one-to-one, we have
x = y.

Now we define a new orthogonality concept in a Banach space.

Definition 2.5. Let E be a smooth Banach space and x, y ∈ E. If
< y, Jx >= 0 or φ(y, x) = ||x||2 + ||y||2, then x is J-orthogonal to y and
denotes x⊥Jy.

Definition 2.6. Let E be a smooth Banach space and let x1, · · · , xn ∈
E\{0}.

(1) {x1, · · · , xn} is J-orthogonal if for any i, j ∈ {1, · · · , n} with i 6= j,
xi⊥Jxj .

(2) If {x1, · · · , xn} is J-orthogonal and for each i ∈ {1, · · · , n}, ||xi|| =
1, we say that {x1, · · · , xn} is J1-orthogonal.
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Lemma 2.7. Let M be a closed subspace of a Banach space E and
let x ∈ E. Then 0 ∈ PM (x) if and only if there exists f ∈ Jx such that
< m, f >= 0 for all m ∈ M .

Proof. By the characterization of a best approximation from a sub-
space, 0 ∈ PM (x) if and only if there exists f ∈ E∗ such that ||f || = 1,
< m, f >= 0 for all m ∈ M , and < x, f >= ||x|| if and only if there
exists f ∈ Jx such that < m, f >= 0 for all m ∈ M .

With the above definition, we get the following properties.

Proposition 2.8. Let E be a smooth Banach space and let x1, · · · ,
xn ∈ E\{0}.

(1) If {x1, · · · , xn} is J-orthogonal, then {x1, · · · , xn} is linearly in-
dependent.

(2) x⊥Jy if and only if x⊥y in the Birkhoff sense, i.e., ||x + αy||2 ≥
||x||2 for all α ∈ R.

Proof. (1) Let α1x1 + · · ·+ αnxn = 0. Then for each i ∈ {1, · · · , n},
< α1x1 + · · ·αnxn, Jxi > = α1 < x1, Jxi > + · · ·+ αn < xn, Jxi >

= αi||xi||2 = 0,

so αi = 0. Thus {x1, · · · , xn} is linearly independent.
(2) Suppose x⊥Jy. Then < y, Jx >= 0 and

φ(x + αy, x) = ||x + αy||2 − 2 < x + αy, Jx > +||x||2
= ||x + αy||2 − ||x||2 − 2α < y, Jx >

= ||x + αy||2 − ||x||2 ≥ 0
for all α ∈ R. Thus ||x + αy||2 ≥ ||x||2 for all α ∈ R. Hence x⊥y in the
Birkhoff sense.

Suppose that x⊥y in the Birkhoff sense, i.e., ||x + αy||2 ≥ ||x||2 for
all α ∈ R. Then

φ(x + αy, x) = ||x + αy||2 − 2 < x + αy, Jx > +||x||2
= ||x + αy||2 − ||x||2 − 2α < y, Jx >

≥ 0

for all α ∈ R. If < y, Jx >6= 0 then renotes by α′ = ||x+αy||2−||x||2
<y,Jx> ,

φ(x + α′y, x) < 0.

This is a contradiction for φ(x, y) ≥ 0.

As usual, we have the following properties.
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Proposition 2.9. If {x1, · · · , xn} is a J1-orthogonal set in a smooth
Banach space E whose the dual space E∗ is strictly convex, then {Jx1,
· · · , Jxn} is linearly independent in the dual space E∗.

Proof. Let α1Jx1 + · · ·+ αnJxn = 0. Then for each i ∈ {1, · · · , n},
< xi, α1Jx1 + · · ·αnJxn >= αi = 0.

Thus {Jx1, · · · , Jxn} is linearly independent in the dual space E∗.

Let E be a Banach space and let E∗ be the dual space of E. The
normalized duality mapping J∗ from E∗ to E∗∗ is defined by

J∗x∗ = {x∗∗ ∈ E∗∗ :< x∗, x∗∗ >= ||x∗||2 = ||x∗∗||2}
for all x∗ ∈ E∗. If E is reflexive, then

J∗x∗ = {x ∈ E :< x, x∗ >= ||x||2 = ||x∗||2}
for all x∗ ∈ E∗.

Proposition 2.10. Let E be a reflexive and smooth Banach space.
Then {x1, · · · , xn} is J-orthogonal if and only if {Jx1, · · · , Jxn} is J∗-
orthogonal.

Proof. If i 6= j, < xi, Jxj >= 0. Note that

< Jxi, J
∗(Jxj) >=< Jxi, xj >

= x̂j(Jxi) = (Jxi)(xj)

=< xj , Jxi >= 0.

Lemma 2.11. [3] Let E be a smooth and uniformly convex Banach
space and let {xn} and {yn} be sequences in E such that either {xn} or
{yn} is bounded. If limn→∞ φ(xn, yn) = 0, then limn→∞ ||xn − yn|| = 0.

Definition 2.12. Let S be any nonempty subset of a smooth Banach
space E. The J-dual cone of S is the set

S0
J = {x ∈ E :< y, Jx >≤ 0 for all y ∈ S}.

The J-orthogonal complement of S is the set

S⊥J = S0
J ∩ (−S)0J = {x ∈ E : < y, Jx >= 0 for all y ∈ S}.

By the definition 2.0.12, we have some basic results about the J-dual
cone and the J-orthogonal complement of a set S.
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Theorem 2.13. Let S be a nonempty subset of a smooth Banach
space E. Then

(1) S0
J is a closed cone and S⊥J is a closed cone.

(2) S0
J = (S)0J and S⊥J = (S)⊥J .

(3) S0
J = [con(S)]0J = [con(S)]

0

J and S⊥J = [span(S)]⊥J = [span(S)]
⊥
J

where
con(S) is the convex hull of S and span(S) is the subspace gener-

ated by S.
(4) S ⊂ (S0

J)0 and S ⊂ (S⊥J )⊥.

(5) If C is a cone, then (C − y)0J = C0
J

⋂
y⊥J for each y ∈ C.

(6) If M is a subspace, then M0
J = M⊥

J .

Proof. (1) Let xn ∈ S0
J and xn → x. Then for any y ∈ S

< y, Jx >= lim
n→∞ < y, Jxn >≤ 0

implies x ∈ S0
J and S0

J is closed.
Let x ∈ S0

J and α ≥ 0. Then, by Proposition 2.0.1, for all y ∈ S,

< y, J(αx) >=< y, αJx >= α < y, Jx >≤ 0.

Thus αx ∈ S0
J , so S0

J is a cone. Since S⊥J = (S0
J)∩ (−S)0J , S⊥J is a closed

cone.
(2) Since S ⊆ S, (S)0J ⊂ S0

J . If x ∈ S0
J and y ∈ S, choose yn ∈ S

such that yn → y. Then < y, Jx >= limn→∞ < yn, Jx >≤ 0 implies
x ∈ (S)0J . Thus S0

J = (S)0J . Moreover, S⊥J = (S)⊥J .
(3) Since S ⊂ con(S), [con(S)]0J ⊂ S0

J . Let x ∈ S0
J and y ∈ con(S).

By the definition of con(S), y =
∑n

i=1 ρiyi for some yi ∈ S and ρi ≥ 0
with

∑n
i=1 ρi = 1. Then

< y, Jx >=
n∑

i=1

ρi < yi, Jx > ≤ 0

implies x ∈ [con(S)]0J , so S0
J ⊂ [con(S)]0J . Thus S0

J = [con(S)]0J . More-

over, S⊥J = [span(S)]⊥J = [span(S)]
⊥
J .

(4) Let x ∈ S. Then for all y ∈ S0
J , < x, Jy >≤ 0. So x ∈ S00

J . Thus
S ⊂ S00

J . Since S00
J is closed, S ⊂ S00

J .
(5) Now x ∈ (C − y)0J if and only if < c− y, Jx >≤ 0 for all c ∈ C.

Let x ∈ (C − y)0J . Then < c − y, Jx >≤ 0 for all c ∈ C. Taking c = 0
and c = 2y, we have < y, Jx >= 0 and < c, Jx >≤ 0 for all c ∈ C.
Thus x ∈ C0

J ∩ y⊥J . Moreover, if x ∈ C0
J ∩ y⊥J , then < c, Jx >≤ 0 and
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< y, Jx >= 0 for all c ∈ C. So < c − y, Jx >≤ 0 for all c ∈ C. Thus
x ∈ (C − y)0J . Therefore,

(C − y)0J = C0
J ∩ y⊥J

for each y ∈ C.
(6) If M is a subspace, then −M = M implies

M0
J = M0

J ∩ (−M)0J = M⊥
J .

Generally, because J is not additive, S0
J is not convex even though S

is convex. Moreover, M⊥
J is not a subspace even though M is a subspace.

3. Characterization of The Generalized Best Approxima-
tions

Let C be a nonempty closed convex subset of E. Suppose that E is a
reflexive, strictly convex and smooth Banach space. Let x ∈ E be given.
If there exists a point x0 ∈ C such that

φ(x0, x) = min
y∈C

φ(y, x) := φ(C, x)

then x0 is called the best J-approximation or the generalized best ap-
proximation of x from C. The mapping P J

C : E → C defined by
P J

C (x) = x0 is called the J-metric projection or the generalized met-
ric projection. The generalized metric projection P J

C is fixed in each
point y ∈ C, so P J

C is idempotent. Moreover P J
C is monotone in E, that

is,
< P J

C (x)− P J
C (y), Jx− Jy > ≥ 0

for any x, y ∈ E. We can find more results in [1].
Let C be a nonempty closed convex subset of E. By Alber[1] or

Kamimura and Takahashi[4], for each x ∈ E, there exists a unique best
J-approximation of x from C. If E is a Hilbert space, then P J

C is co-
incident with the metric projection from E onto C. We also know the
following proposition.

Proposition 3.1. [4, 6] Let C be a nonempty closed convex subset
of a smooth Banach space E and x ∈ E. Then x0 = P J

C (x) if and only
if

< x0 − y, Jx− Jx0 > ≥ 0
for all y ∈ C.
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Proof. Let y ∈ C and let λ ∈ (0, 1). Then

φ(x0, x) ≤ φ((1− λ)x0 + λy, x).

So,

0 ≤ ||(1− λ)x0 + λy||2 − 2 < (1− λ)x0 + λy, Jx > + ||x||2

− ||x0||2 + 2 < x0, Jx > − ||x||2

= ||(1− λ)x0 + λy||2 − ||x0||2 − 2λ < y − x0, Jx >

≤ 2λ < y − x0, J((1− λ)x0 + λy) > −2λ < y − x0, Jx >

= 2λ < y − x0, J((1− λ)x0 + λy)− Jx > .

Since 2λ < x0 − y, J((1− λ)x0 + λy0) > ≤ ||x0||2 − ||(1− λ)x0 + λy||2
< y − x0, J((1− λ)x0 + λy)− Jx > ≥ 0.

Taking the limit λ ↓ 0, we obtain

< y − x0, Jx0 − Jx > ≥ 0

since J is norm-to-weak* continuous. Thus

< x0 − y, Jx− Jx0 > ≥ 0

for all y ∈ C.
Conversely, for any y ∈ C, we have

φ(y, x)− φ(x0, x) = ||y||2 − 2 < y, Jx > + ||x||2 − ||x0||2

+2 < x0, Jx > − ||x||2

= ||y||2 − ||x0||2 − 2 < y − x0, Jx >

≥ 2 < y − x0, Jx0 > −2 < y − x0, Jx >

= 2 < y − x0, Jx0 − Jx >

≥ 0.

Thus x0 = P J
C (x).

Corollary 3.2. Let C be a closed convex subset of the innner prod-
uct space E, x ∈ E and y0 ∈ C. Then x0 ∈ PC(x) if and only if

< x− x0, y − x0 > ≤ 0

for all y ∈ C.

By the previous proposition, we have the characterization of general-
ized best approximation for a subspace.
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Proposition 3.3. Let M be a closed subspace of a reflexive, strictly
convex and smooth Banach space E, x ∈ E and x0 ∈ M . Then x0 =
P J

M (x) if and only if

< m, Jx− Jx0 >= 0

for all m ∈ M .

Proof. Suppose that x0 = P J
M (x). Since M is a subspace, x0−m ∈ M

for all m ∈ M. By Proposition 3.0.14,

< x0 − (x0 −m), Jx− Jx0 >=< m, Jx− Jx0 > ≥ 0

for all m ∈ M . Similarly, we have

< x0 − (x0 + m), Jx− Jx0 >=< −m, Jx− Jx0 > ≥ 0

for all m ∈ M . So,
< m, Jx− Jx0 > ≤ 0

for all m ∈ M . Thus,

< m, Jx− Jx0 >= 0

for all m ∈ M .
Conversely, suppose that < m, Jx−Jx0 >= 0 for all m ∈ M . Since

x0 −m ∈ M for all m ∈ M , we have

< x0 −m, Jx− Jx0 > = 0

for all m ∈ M . So,

< x0 −m, Jx− Jx0 > ≥ 0

for all m ∈ M . Thus x0 = P J
M (x).

Example 3.4. For p ∈ (1,∞), `p(2) is a uniformly convex and uni-
formly smooth Banach space. In E = `p(2), for each x = (x1, x2) ∈ E

J(x) = ||x||2−p
p (x1|x1|p−2, x2|x2|p−2) ∈ `q(2)

where 1
p + 1

q = 1. Consider a closed subspace M of E which is generated
by (1, 0). By proposition 3.0.16, if x = (x1, x2), then

x0 = (x0, 0) = P J
M (x) ⇔ < (t, 0), Jx− Jx0 > = 0

for all t ∈ R.

⇔ < (t, 0), ||x||2−p
p (x1|x1|p−2, x2|x2|p−2) >

= < (t, 0), ||x0||2−p
p (x0|x0|p−2, 0) >

for all t ∈ R.

⇔ ||x||2−p
p x1|x1|p−2t = ||x0||2−p

p x0|x0|p−2t = x0t
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for all t ∈ R.

⇔ x0 = ||x||2−p
p x1|x1|p−2.

Hence P J
M (x) = P J

M ((x1, x2)) = (||x||2−p
p x1|x1|p−2, 0) for each x ∈ E.

Corollary 3.5. Let M be a closed subspace of an inner product
space E, x ∈ E and x0 ∈ M . Then x0 = P J

M (x) if and only if

< m, x− x0 > = 0.

Corollary 3.6. If M is a closed subspace of E, then P J
M (x) = 0 if

and only if x⊥JM .

Example 3.7. For p ∈ (1,∞), `p(2)(= R2
p) is a uniformly convex and

uniformly smooth Banach space. Let M = [(1, 0)] and x ∈ E. Then

P J
M (x) = {(0, 0)} ⇔ x = [(0, 1)] ⇔ x ∈ M⊥

J .

Corollary 3.8. If M is a closed subspace of E, then P J
M is homo-

geneous.

Proof. Let x0 ∈ P J
M (x). Then

< m, Jx− Jx0 >= 0

for all m ∈ M . So for each real number α,

< m, J(αx)− J(αx0) > = < m, αJx− αJx0 >

= α <
m

α
, Jx− Jx0 >

= 0
for all m ∈ M . Thus P J

M (αx) = αP J
M (x) = αx0.

In [6], Matsushita and Takahashi gave the following result.

Proposition 3.9. [4,6] Let E be a reflexive, strictly convex and
smooth Banach space, let C be a nonempty closed convex subset of E
and let x ∈ E. Then

φ(y, P J
C (x)) + φ(P J

C (x), x) ≤ φ(y, x)

for all y ∈ C.

Proof. By proposition 3.0.14,

φ(y, x)−φ(y, P J
C (x))−φ(P J

C (x), x) = ||y||2−2 < y, Jx > +||x||2−||P J
C (x)||2

+2 < P J
C (x), Jx > −||x||2−||y||2+2 < y, JP J

C (x) > −||P J
C (x)||2

= −2 < y, Jx > +2 < P J
C (x), Jx > +2 < y − P J

C (x), JP J
C (x) >
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= −2 < y − P J
C (x), Jx > +2 < y − P J

C (x), JP J
C (x) >

for all y ∈ C.
By corollary 3.0.16, we have the following result for a closed subspace,

2 < y − P J
C (x), JP J

C (x)− Jx > ≥ 0

Proposition 3.10. Let E be a reflexive, strictly convex and smooth
Banach space, let M be a nonempty closed subspace of E and let x ∈ E.
Then

φ(y, P J
M (x)) + φ(P J

M (x), x) = φ(y, x)
for all y ∈ M .

Proof. By the definition of φ and proposition 3.0.16, we have

φ(y, x)− φ(P J
M (x), x)− φ(y, P J

M (x))

= ||y||2 − 2 < y, Jx > +||x||2 − ||P J
M (x)||2

+2 < P J
M (x), Jx > −||x||2 − ||y||2

+2 < y, JP J
M (x) > −||P J

M (x)||2
= −2 < y, Jx > +2 < P J

M (x), Jx >

+2 < y, JP J
M (x) > −2 < P J

M (x), P J
M (x) >

= 2 < y − P J
M (x), JP J

M (x)− Jx >

= 0
for all y ∈ M . Thus φ(y, P J

M (x)) + φ(P J
M (x), x) = φ(y, x) for all y ∈

M .

Now we verify corollary 3.0.23, in a example.

Example 3.11. For p ∈ (1,∞), `p(2), is a uniformly convex and
uniformly smooth Banach space. In example 3.0.17, we found the gen-
eralized best approximation of x ∈ `p(2). Note that

φ((t, 0), P J
M (x)) + φ(P J

M (x), x) = φ((t, 0), (||x||2−p
p x1|x1|p−2, 0))

+φ((||x||2−p
p x1|x1|p−2, 0), (x1, x2))

= t2−2||x||2−p
p tx1|x1|2−p+2(||x||2−p

p x1|x1|p−2)2

−2(||x||2−p
p x1|x1|p−2)2 + ||x||2p

= φ((t, 0), x)
for all (t, 0) ∈ M .
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We know the characterization for best approximation for a closed
subspace in a normed linear space. Next we will give the characterization
by use the normalized duality mapping.

Theorem 3.12. Let E be a normed linear space, let M be a subspace
of E, x ∈ E and m0 ∈ M . Then m0 ∈ PM (x) if and only if there exists
j(x−m0) ∈ J(x−m0) such that < m, j(x−m0) >= 0 for all m ∈ M .

Proof. Let x ∈ E\M . Then ||x − m0|| = d(x, M) > 0. By Hahn-
Banach Theorem, there exists f0 ∈ E∗ such that ||f0|| = 1, < m, f0 >= 0
for all m ∈ M and < x, f0 >= ||x−m0||. Set j(x−m0) = ||x−m0||f0.
Then j(x − m0) ∈ E∗, < m, j(x − m0) >= 0, for all m ∈ M and
||j(x−m0)|| = ||x−m0||.

Conversely, suppose that there exists j(x − m0) ∈ J(x − m0) such
that

< m, j(x−m0) >= 0, ||j(x−m0)|| = ||x−m0||
for all m ∈ M . Then

||x−m0||2 =< x−m0, j(x−m0) >

=< x−m, j(x−m0) >

≤ ||x−m|| ||j(x−m0)||
= ||x−m|| ||x−m0||

for all m ∈ M . So
||x−m0|| ≤ ||x−m||

for all m ∈ M . Thus m0 ∈ PM (x).

Corollary 3.13. Let E be a normed linear space, M be a subspace
of E, x ∈ E\M and G ⊂ M . Then G ⊂ PM (x) if and only if for each
g0 ∈ G there exists an j(x−g0) ∈ J(x−g0) such that < m, j(x−g0) >= 0
for all m ∈ M .

Proof. Suppose that G ⊂ PM (x). Then there exists g0 ∈ G such that
g0 ∈ PM (x). By the previous theorem, for each g0 ∈ G, there exists an
j(x− g0) ∈ J(x− g0) such that < m, j(x− g0) >= 0 for all m ∈ M .

Conversely, suppose that for each g0 ∈ G there exists an j(x− g0) ∈
J(x−g0) such that < m, j(x−g0) >= 0 for all m ∈ M . By the previous
theorem, g0 ∈ PM (x). Thus G ⊂ PM (x).

Remark 3.14. (1) If for some m0 ∈ PM (x) there exists j(x−m0) ∈
J(x−m0) such that < m, j(x−m0) >= 0 for all m ∈ M , then j(x−m0) ∈
J(x−m) for all m ∈ PM (x).
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Proof. Suppose that for some m0 ∈ PM (x) there exists j(x −m0) ∈
J(x−m0) such that < m, j(x−m0) >= 0 for all m ∈ M . Then

||x−m0||2 =< x−m0, j(x−m0) >

=< x−m, j(x−m0) >

≤ ||x−m|| ||j(x−m0)||,
so < x −m, j(x −m0) >= ||x −m0||2 = ||x −m||2 for all m ∈ PM (x)
and j(x−m0) ∈ J(x−m) for all m ∈ PM (x).

(2) Because J is not additive when E is not a Hilbert space, we cannot
give the characterization of generalized best approximation such as the
above characterization of best approximation.
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