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NORMALIZED DUALITY MAPPING AND
GENERALIZED BEST APPROXIMATIONS

Sunc Ho PARK* AND HyaNG JoO RHEE**

ABSTRACT. In this paper, we introduce certain concepts which pro-
vide us with a perspective and insight into the generalization of
orthogonality with the normalized duality mapping. The material
of this paper will be mainly, but not only, used in developing algo-
rithms for the best approximation problem in a Banach space.

1. Introduction

Let E be a real Banach space with the norm || - || and let E* be the
dual space of E. Denote by < -, - > the duality product. The normalized
duality mapping J from F to E* is defined by

Jr = {z* € B* :< x,2* >=||z|]* = ||z*|]*}
for all z € E. Hahn-Banach theorem guarantees that Jx # ) for every

r e L.
A Banach space E is said to be strictly convex if |[Z52|| < 1 for all

x,y € E with ||z|| = ||y]| = 1 and = # y. A Banach space F is said
to be uniformly convex if lim;, . ||z, — yn|| = 0 for any two sequences
{zn}, {yn} in E such that ||x,|| = |lyn|| = 1 and lim,,_, H%H =1.

Let S(E) = {z € E : ||z|| = 1} be the unit sphere of E. The Banach
space F is said to be smooth provided

ol ] — ]

t—0 t
exists for each z,y € S(FE). It is also said to be uniformly smooth if the
limit is attained uniformly for z,y € S(E). It is well known that if E is
smooth, then the duality mapping is single valued. It is also known that

if F is uniformly smooth, then J is uniformly norm-to-norm continuous
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on each bounded subset of E. Some properties of the normalized duality
mapping have been given in [5, 6].

Let E be a smooth Banach space and let E* be the dual of E. The
function ¢ : £ x E — R is defined by

Sy, ) = [lyll* =2 <y, Jz > +||z|?

for all z,y € E, where J is the normalized duality mapping from F to
E*. Tt is obvious from the definition of the function ¢ that

(lyll = l=1)? < oy, =) < (llyll +1|=]])? (1)
for all z,y € E.

In what follows we recall from [1] some examples for the mapping J
in the uniformly convex and uniformly smooth Banach spaces /¥ and
LP p e (1,00).

o For (P : Jx = Hngp_py el x={xy,z9, -},

y = {z1]z1 [P, wolaa P72, - ),
pttgt=1

o For LP : Jx = ||z|[3,7 |zl 2x e L4, p~ ' 4¢P = 1.

In section 2, we define a new orthogonality concept, that is called
a J-orthogonality in a smooth Banach space, by using the normalized
duality mapping which is equivalent to the Birhkoff orthogonality in a
Banach space, and give some basic properties of J-orthogonality in a
smooth Banach space.

In [6], Matsushita and Takahashi gave a characterization of the gen-
eralized best approximation from a closed convex subset of a smooth
Banach space E. In section 3, we find a best approximation to an el-
ement of a smooth Banach space E from a closed subspace of E and
characterizations of the generalized best approximation.

2. J-orthogonality

In this section, we will study a kind of orthogonality by using the
normalized duality mapping. First we will give some results about nor-
malized duality mapping.

PROPOSITION 2.1. [2] (a) Jx is convex and o(E*, E)-closed. J(ax) =
aJz for all « € R.

(b) For each x € S(F), Jx is a weak™* compact convex extremal subset
of S(E*) = {z* € E* : ||z*|| = 1}. In particular, Jx has extreme points,
each extreme point of Jx is an extreme of S(E*), and Jx is the weak™
closed convex hull of its set of extreme points.
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(c) J is norm-weak™ upper semi-continuous. That is, if xg € E and
W is a weak® open sets with Jxqg C W, then there exists an open
neighborhood U of zy such that Jx C W for all x € U.

(d) J is a map if and only if E* is strictly convex. In particular,
J =1 if F is Hilbert.

It is natural to ask under what conditions J is linear. It turns out
that this completely characterize a Hilbert space.

DEFINITION 2.2. A selection for the normalized duality mapping J
is a function s : £ — E* such that s(z) € Jx for every x € E. That is,
Is(@)l| = [lz|l and < =z, 5(z) >= ||=[*.

THEOREM 2.3. [2] The following statements are equivalent for a Ba-
nach space E.

(1) E is a Hilbert space.

(2) Every selection for J is linear.

(3) There exists a selection for J which is linear.

(4) J is “additive”, i.e., J(z +y) = Jx + Jy.

(5) J is “sub-additive”, i.e., Jx + Jy C J(z +y).

PROPOSITION 2.4. [6] If E is a strictly convex and smooth Banach
space, then for any x,y € E, ¢(y,z) =0 if and only if x = y.

Proof. Tt suffices to show that if ¢(y,xz) = 0, then z = y. By (1), we
have ||z|| = |ly||. Then

<y, Ja >=|lyll* = [[2]|* = || J|]*.

By the definition of J, we have Jz = Jy. Since J is one-to-one, we have
T =1y. O

Now we define a new orthogonality concept in a Banach space.

DEFINITION 2.5. Let F be a smooth Banach space and z,y € E. If
<y,Jx >=0or ¢(y,z) = ||z||* + ||y||?, then z is J-orthogonal to y and
denotes L 7y.

DEFINITION 2.6. Let E be a smooth Banach space and let 1, - ,x, €
(1) {x1,--+ ,x,} is J-orthogonal if for any i, j € {1, - ,n} with i # j,
zildx;
7 B
(2) If {x1,--- ,xzp} is J-orthogonal and for each i € {1,--- ,n}, ||zi|| =
1, we say that {z1,---,x,} is Ji-orthogonal.
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LEMMA 2.7. Let M be a closed subspace of a Banach space E and
let z € E. Then 0 € Py (z) if and only if there exists f € Jx such that
<m,f>=0 forallme M.

Proof. By the characterization of a best approximation from a sub-
space, 0 € Py(z) if and only if there exists f € E* such that ||f|| = 1,
<m,f >=0for all m € M, and < z, f >= ||z|| if and only if there
exists f € Jx such that <m, f >=0 for all m € M. O

With the above definition, we get the following properties.

PropPOSITION 2.8. Let E be a smooth Banach space and let x1,- - ,
xn € E\{0}.

(1) If {x1,--- ,xp} is J-orthogonal, then {x1,--- ,x,} is linearly in-
dependent.

(2) 17y if and only if z 1y in the Birkhoff sense, i.e., ||z + ay||* >
||z||? for all o« € R.

Proof. (1) Let ayxy + - -+ + apxy, = 0. Then for each i € {1,--- ,n},
<Xy F T, Jr; > =0y <z, Jr; > A+ an < xp, Jrp >
= ajf|ail|* = 0,

so a; = 0. Thus {z1,- - ,zy,} is linearly independent.
(2) Suppose z1”/y. Then < y, Jz >= 0 and

oz +ay,z) = ||z + ay||> =2 <z + ay, Jr > +||z|)?
= [Jo + ay|]® - [Jz||* - 20 <y, Ja >
= |Jz + ay|]® = [lz||* > 0
for all @ € R. Thus ||z + ay||? > ||z||? for all @ € R. Hence x_Ly in the
Birkhoff sense.

Suppose that z_Ly in the Birkhoff sense, i.e., ||z + ay|[? > ||z||? for
all @ € R. Then

oz +ay,z) =z +ay|* —2 <2+ ay, Jr > +||z]]?
= ||z + ay|® — ||z|]* — 22 < y, Jz >

>0
for all « € R. If < y, Jx >+ 0 then renotes by o/ = W,
é(x+d'y,z) <0.
This is a contradiction for ¢(z,y) > 0. O

As usual, we have the following properties.
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PROPOSITION 2.9. If {1, ,x,} is a Ji-orthogonal set in a smooth
Banach space E whose the dual space E* is strictly convex, then {Jx,
-+« ,Jxy,} is linearly independent in the dual space E*.

Proof. Let ayJxy + -+ - + apJxy, = 0. Then for each i € {1,--- ,n},
<z, onJry + - anJr, >=a; = 0.

Thus {Jx1, -, Jx,} is linearly independent in the dual space E*. [

Let E be a Banach space and let E* be the dual space of E. The
normalized duality mapping J* from E* to E** is defined by

T = {2 € B < a0 >= ||of|? = ||2*][2)
for all * € E*. If E is reflexive, then
Jr* ={z € E:<xz* >=||z|> = ||z*]*}

for all z* € E*.

PROPOSITION 2.10. Let E be a reflexive and smooth Banach space.
Then {x1,--- ,x,} is J-orthogonal if and only if {Jxy, -, Jx,} is J*-
orthogonal.

Proof. If © # j, < 3, Jr; >= 0. Note that
< JSUZ',J*(J.T]') >= JJZZ',SC]' >
= T;(Jxi) = (Jai)(z;)
:<l‘j,Jﬂj‘i >=0.
O

LEMMA 2.11. [3] Let E be a smooth and uniformly convex Banach
space and let {x,} and {y,} be sequences in E such that either {x,} or
{yn} is bounded. If lim,_,o ¢(zp,yn) = 0, then lim, . ||z, — ynl|| = 0.

DEFINITION 2.12. Let S be any nonempty subset of a smooth Banach
space E. The J-dual cone of S is the set

SY={rcE:<y Jor><0 forall yecS}.
The J-orthogonal complement of S is the set
S+=5'N(-9))={zecE:<y,Jr>=0 forall yeS}.

By the definition 2.0.12, we have some basic results about the J-dual
cone and the J-orthogonal complement of a set S.
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THEOREM 2.13. Let S be a nonempty subset of a smooth Banach
space E£. Then

(1) SY is a closed cone and S7 is a closed cone.

(2) § = (), and 53 = (S).

(3) 84 = [con(8)]9 = Teon(S)], and S} = [span($)}} = [span(S)],
where

con(S) is the convex hull of S and span(S) is the subspace gener-

ated by S.

(4) S c (89 and S C (S+)*.

(5) If C is a cone, then (C' —y)§ = CY Ny for each y € C.

(6) If M is a subspace, then MY = M7 .

Proof. (1) Let z,, € SY and z,, — z. Then for any y € S

<y, Jr>= lim <y, Jzr, >< 0
n—oo

implies x € 5’9 and 5’9 is closed.
Let z € 59 and « > 0. Then, by Proposition 2.0.1, for all y € S,

<y, J(azr)>=<y,aJr>= a<y,Jr>< 0.

Thus ax € S9, so S is a cone. Since ST = (S9)N(—9)Y, S7 is a closed
cone.

(2) Since S C S, (5)Y c SY. If z € SY and y € S, choose y, € S
such that y, — y. Then < y, Jxr >= limy— 00 < Ypn,Jxr > < 0 implies
z € (9)Y. Thus SY = (9)Y. Moreover, S+ = (S5)+.

(3) Since S C con(S), [con(S)]% € SY. Let x € SY and y € con(S).
By the definition of con(S), y = >, piyi for some y; € S and p; > 0
with 7" | p; = 1. Then

<y, Jz >:Zpi <y,Jr><0
i=1
implies = € [con(S)]%, so SY C [con(S)]%. Thus SY = [con(S)]%. More-
——l
over, S+ = [span(S)]F = [span(S)];.
(4) Let z € S. Then for all y € SY, < z,Jy >< 0. So z € SY. Thus
S C Sgo. Since 590 is closed, S C 590'
(5) Now z € (C —y)Y if and only if < c—y,Jz >< 0 for all c € C.
Let € (C —y)%. Then < ¢ —y,Jz >< 0 for all ¢ € C. Taking ¢ =0

and ¢ = 2y, we have < y,Jr >= 0 and < ¢,Jr >< 0 for all ¢ € C.
Thus z € 09 N y}. Moreover, if x € 09 N y}, then < ¢, Jz > < 0 and
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<y, Jr>=0forallce C. So <c—y,Jxr >< 0 forall c € C. Thus
z € (C —y)Y. Therefore,

(C-y)hy=Cnyr

for each y € C.
(6) If M is a subspace, then —M = M implies

MY =MIN(-M)Y = My.
O

Generally, because J is not additive, 59 is not convex even though S
is convex. Moreover, M j is not a subspace even though M is a subspace.

3. Characterization of The Generalized Best Approxima-
tions

Let C' be a nonempty closed convex subset of E. Suppose that E is a
reflexive, strictly convex and smooth Banach space. Let z € E be given.
If there exists a point xg € C such that

P(zo, ) = Iyrgg o(y,x) == o(C, x)

then zg is called the best J-approximation or the generalized best ap-
proximation of z from C. The mapping P(‘J] : E — C defined by
PJ(z) = z¢ is called the J-metric projection or the generalized met-
ric projection. The generalized metric projection Pg is fixed in each
point y € C, so P@’ is idempotent. Moreover P@] is monotone in F, that
is,
< Pl(x) = PA(y), Jo = Jy > > 0

for any z,y € E. We can find more results in [1].

Let C' be a nonempty closed convex subset of E. By Alber[l] or
Kamimura and Takahashi[4], for each z € E, there exists a unique best
J-approximation of x from C. If E is a Hilbert space, then P‘CI is co-
incident with the metric projection from E onto C'. We also know the
following proposition.

PROPOSITION 3.1. [4,6] Let C' be a nonempty closed convex subset

of a smooth Banach space E and x € E. Then xg = P‘C](x) if and only
if

<zg—y,Jr—Jrg>> 0
for ally € C.
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Proof. Let y € C and let A € (0,1). Then
d(xo,x) < d((1 — Nz + Ny, x).
So,
0<[|(1=Nzo+M|> -2 < Q= Nzo+ Ny, Jz > + |||
—|zol|? + 2 < o, Jz > — ||z||?
— {11 = Mo + Ml — lfzoll2 — 2X < y — @0, Tz >
<2A<y—x0, J(1 = N)zo+ Ay) > =2\ <y — o, Jz >
=2\ <y—z0,J (1 — Nzog + \y) — Jz > .
Since 2A < xo — y, J((1 — N)xo + Ayo) > < [|zo[* — [[(1 = N)zo + Ay |?
<y—xy, J(1 = Nzog+ \y) — Jz > > 0.
Taking the limit A | 0, we obtain
<y—xg, Jro—Jr>> 0
since J is norm-to-weak™ continuous. Thus
<zg—Yy, Jr—Jrg> >0

forall y € C.
Conversely, for any y € C, we have

¢y, x) — ¢(wo,z) = [lylI> =2 <y, Jo > +||z[]* — ||zo| |
+2 < xo, Jr > — ||z||?
— Iyl = llwoll? =2 < y — a0, Ja >
>2<y—wx, Jrg> -2<y—x0, JTr >
=2<y—uz9, Jrg—Jxr >
> 0.

Thus zo = PZ(z). O

COROLLARY 3.2. Let C' be a closed convex subset of the innner prod-
uct space E, x € E and yg € C. Then x¢ € Po(x) if and only if

<z -z, y—ax0>=< 0
for ally € C.

By the previous proposition, we have the characterization of general-
ized best approximation for a subspace.
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ProrosiTION 3.3. Let M be a closed subspace of a reflexive, strictly
convex and smooth Banach space E, © € E and xy € M. Then xo =
P{,(z) if and only if

<m,Jr—Jxg>=0
for allm € M.
Proof. Suppose that 29 = Py;(x). Since M is a subspace, zo—m € M
for all m € M. By Proposition 3.0.14,
<zog—(xg—m), Jx —Jrg >=<m, Jr — Jxg>> 0
for all m € M. Similarly, we have
<zp—(xg+m), Jx—Jrg >=< —m, Jxr —Jxg > > 0
for all m € M. So,
<m,Jr—Jxg>< 0
for all m € M. Thus,
<m,Jr—Jrg>=0

for all m € M.
Conversely, suppose that < m, Jx—Jxg >= 0 for all m € M. Since
xg —m € M for all m € M, we have

<xzg—m, Jr—Jrg>= 0
for all m € M. So,
<xg—m, Jr—Jxrg>> 0
for all m € M. Thus z¢ = Py, (z). O

EXAMPLE 3.4. For p € (1,00), ¢P(2) is a uniformly convex and uni-
formly smooth Banach space. In E = ¢P(2), for each x = (z1,29) € E

J(x) = |Jz][y7P (@1|z1 P72, 2ol 7?) € £9(2)
where %—l—% = 1. Consider a closed subspace M of E which is generated
by (1,0). By proposition 3.0.16, if x = (x1,z2), then

zo = (20,0) = P{j(z) & < (t,0),Jz — Jzg> = 0

for all t € R.

& < (t,0),[|2][;7P (1|21 [P72, ol z2P7?) >

= < (t,0), |[zo| ;P (wolzo["~2,0) >

for all t € R.

& ||2|ZPar e [P = [|wol[2 Pao|wolP 2t = ot
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for all t € R.
& ag = ||y Par]a [P
Hence Pyi;(z) = P{;((z1,72)) = (||| |5 P21|21[P~2,0) for each z € E.

COROLLARY 3.5. Let M be a closed subspace of an inner product
space E, v € E and xg € M. Then zo = Pj(x) if and only if

<m,x—x9>= 0.

COROLLARY 3.6. If M is a closed subspace of E, then Py (x) = 0 if
and only if x 17 M.

EXAMPLE 3.7. For p € (1,00), £7(2)(= R2) is a uniformly convex and
uniformly smooth Banach space. Let M = [(1,0)] and « € E. Then

Pl(z) ={(0,0)} & 2=[0,1)] & =z M7y.

COROLLARY 3.8. If M is a closed subspace of E, then PJ\{[ is homo-
geneous.

Proof. Let xg € Pj;(x). Then
<m,Jr—Jrg>=0
for all m € M. So for each real number «,
<m, J(ax) — J(azg) > = <m, aJxr — aJry >
:a<@, Jr — Jzg >
a
=0
for all m € M. Thus P{;(ax) = aP{;(z) = az. O

In [6], Matsushita and Takahashi gave the following result.

PROPOSITION 3.9. [4,6] Let E be a reflexive, strictly convex and

smooth Banach space, let C' be a nonempty closed convex subset of E
and let x € E. Then

3y, P2(x)) + ¢(P(),2) < ¢(y, z)
for all y € C.
Proof. By proposition 3.0.14,
Sy, x) =y, P () —¢(P(x), ) = [ly|[*=2 <y, Jo > +[|a] *~||PZ(2)[]”
+2 < P(x), Ja > =||z|P=|ly|*+2 < y, JPL(z) > —|| P2 ()|
= 2<y, Jr>+2< Pl(z),Jr > +2 <y — Pl(x), JPA(x) >
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= 2<y— Pl(x),Jr > +2 <y — Pl(z),JPL(zx) >
for all y € C.
By corollary 3.0.16, we have the following result for a closed subspace,

2 <y — Pl(x),JPL(x)—Jz>> 0
O

ProprosITION 3.10. Let E be a reflexive, strictly convex and smooth

Banach space, let M be a nonempty closed subspace of E and let x € E.
Then

$y, Pir(x)) + ¢(Piy(z), 2) = ¢(y,z)
for ally € M.

Proof. By the definition of ¢ and proposition 3.0.16, we have
Oy, @) — ¢(Piy(x), ) — ¢y, P ()
= lyll* =2 <y, Jo > +[[2]]> — ||Pfj (=)
12 < Py(@), o > —lal2 — |ly]?
12 <y, IP(2) > —|| Pl (@)
=2 <y, Jr>+2 < Pi(x), Jo >
+2 <y, JP(z) > =2 < Pi;(z), P{;(z) >
=2 <y— P{(x), JP{;(z) — Jx >
=0
for all y € M. Thus ¢(y, P{,;(z)) + ¢(Pi;(z),x) = ¢(y,z) for all y €
M. O

Now we verify corollary 3.0.23, in a example.

ExaMPLE 3.11. For p € (1,00), #P(2), is a uniformly convex and
uniformly smooth Banach space. In example 3.0.17, we found the gen-
eralized best approximation of x € /P(2). Note that

o((t,0), Piy(z)) + ¢(Piy(x), ) = ¢((¢,0), (|[a][; 71|21 P72, 0))
+o((lll;Porfe1 P72, 0), (21, 22))
= t2=2Ja|[yPtwr|er PP+ 2(||2|; P o] P
=2(|Jall5 P12 [P7%) + [

= ¢((t,0),$)
for all (¢,0) € M.
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We know the characterization for best approximation for a closed
subspace in a normed linear space. Next we will give the characterization
by use the normalized duality mapping.

THEOREM 3.12. Let E be a normed linear space, let M be a subspace
of E, x € E and mg € M. Then mgy € Py(x) if and only if there exists
j(x —mg) € J(x — mg) such that < m,j(x —mg) >= 0 for all m € M.

Proof. Let x € E\M. Then ||z — my|| = d(z, M) > 0. By Hahn-
Banach Theorem, there exists fo € E* such that || fo|| =1, <m, fo >=0
for all m € M and < z, fo >= ||z — mol|. Set j(z —mo) = ||z — mo|]| fo-
Then j(x — mp) € E*, < m,j(x —mg) >= 0, for all m € M and
|15 (2 = mo)|| = [l = mol|.

Conversely, suppose that there exists j(z — mg) € J(z — myg) such
that

<m, j(@ —mp) >=0, [|j(x —mo)l| = |[x — mol|
for all m € M. Then
|z = mol[* = < 2 —mo, j(x —mp) >

=<z —m, j(z—mo) >

< |l —ml[|[5(z —mo)|l

= ||z —ml[ [z = mol|
for all m € M. So

||z = mol| < [l —ml|

for all m € M. Thus mgy € Py(x). O

COROLLARY 3.13. Let E be a normed linear space, M be a subspace
of E, x € E\M and G C M. Then G C Py (x) if and only if for each
go € G there exists an j(x—go) € J(x—go) such that < m, j(x—gp) >=0
for allm € M.

Proof. Suppose that G C Pys(x). Then there exists ggp € G such that
go € Py(x). By the previous theorem, for each gy € G, there exists an
j(x —go) € J(x — go) such that < m, j(x — go) >= 0 for all m € M.

Conversely, suppose that for each gy € G there exists an j(z — go) €
J(x — go) such that < m, j(z—go) >= 0 for all m € M. By the previous
theorem, gg € Pys(z). Thus G C Py(x). O

REMARK 3.14. (1) If for some mg € Pys(x) there exists j(z —myg) €
J(x—myg) such that < m, j(x—myg) >= 0 for allm € M, then j(x—myg) €
J(x —m) for all m € Py(z).
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Proof. Suppose that for some mg € Pys(z) there exists j(x — mg) €
J(x —myg) such that < m, j(x —mg) >=0 for all m € M. Then

||z = mol[> = < & —mo, j(z — mo) >
=<z —m,jlzr—mpy) >
< lz = ml[|]5(z —mo)ll,

so < x—m, j(x—mg) >= ||z —mg||? = ||z — m||? for all m € Py(x)
and j(x —mg) € J(x —m) for all m € Py (z). O

(2) Because J is not additive when F is not a Hilbert space, we cannot
give the characterization of generalized best approximation such as the
above characterization of best approximation.

(1]

(4]

[5]

(7]

8
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