• Title/Summary/Keyword: mathematical investigation

Search Result 431, Processing Time 0.023 seconds

Collision Risk Assessment by using Hierarchical Clustering Method and Real-time Data (계층 클러스터링과 실시간 데이터를 이용한 충돌위험평가)

  • Vu, Dang-Thai;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.483-491
    • /
    • 2021
  • The identification of regional collision risks in water areas is significant for the safety of navigation. This paper introduces a new method of collision risk assessment that incorporates a clustering method based on the distance factor - hierarchical clustering - and uses real-time data in case of several surrounding vessels, group methodology and preliminary assessment to classify vessels and evaluate the basis of collision risk evaluation (called HCAAP processing). The vessels are clustered using the hierarchical program to obtain clusters of encounter vessels and are combined with the preliminary assessment to filter relatively safe vessels. Subsequently, the distance at the closest point of approach (DCPA) and time to the closest point of approach (TCPA) between encounter vessels within each cluster are calculated to obtain the relation and comparison with the collision risk index (CRI). The mathematical relationship of CRI for each cluster of encounter vessels with DCPA and TCPA is constructed using a negative exponential function. Operators can easily evaluate the safety of all vessels navigating in the defined area using the calculated CRI. Therefore, this framework can improve the safety and security of vessel traffic transportation and reduce the loss of life and property. To illustrate the effectiveness of the framework proposed, an experimental case study was conducted within the coastal waters of Mokpo, Korea. The results demonstrated that the framework was effective and efficient in detecting and ranking collision risk indexes between encounter vessels within each cluster, which allowed an automatic risk prioritization of encounter vessels for further investigation by operators.

A Study on the Effect of the Orifice Shape on Oil Outflow from a Damaged Ship (사고 선박 손상부 형상이 기름 유출량에 미치는 영향 연구)

  • Park, Il-Ryong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.620-631
    • /
    • 2022
  • This paper shows the numerical prediction of the change in oil outflow rate according to the orifice shape of a damaged ship by using the computational fluid dynamics (CFD) analysis method. It also provides discharge coefficients for various orifice shapes to be used in theoretical prediction approaches. The oil outflow from the model ship was analyzed using a multiphase flow method under the condition that the Froude and Reynolds number similitudes were satisfied. The present numerical results were verified by comparing them with the available experimental data. Along with the aspect ratio of the orifice and the wall thickness of the cargo tank, the effects of the orifice shapes defined by mathematical figures on the oil outflow were investigated. To consider more realistic situations, the investigation of the ef ect of the crushed iron plate around the damaged part was also included. The numerical results confirmed the change in oil outflow time for various shapes of the damaged part of the oil tank, and discharge coefficients that quantify the viscous effects of those orifice shapes were extracted. To verify the predicted discharge coefficients, they were applied to an oil spill estimation equation. As a result, a good agreement between the CFD and theoretical results was obtained.

Geological Factor Analysis for Evaluating the Long-term Safety Performance of Natural Barriers in Deep Geological Repository System of High-level Radioactive Waste (지질학적 심지층 처분지 내 천연방벽의 고준위 방사성 폐기물 장기 처분 안전성 평가를 위한 지질학적 인자 분석)

  • Hyeongmok Lee;Jiho Jeong;Jaesung Park;Subi Lee;Suwan So;Jina Jeong
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.533-545
    • /
    • 2023
  • In this study, an investigation was conducted on the features, events, and processes (FEP) that could impact the long-term safety of the natural barriers constituting high-level radioactive waste geological repositories. The FEP list was developed utilizing the IFEP list 3.0 provided by the Nuclear Energy Agency (NEA) as foundational data, supplemented by geological investigations and research findings from leading countries in this field. A total of 49 FEPs related to the performance of the natural barrier were identified. For each FEP, detailed definitions, classifications, impacts on long-term safety, significance in domestic conditions, and feasibility of quantification were provided. Moreover, based on the compiled FEP list, three scenarios that could affect the long-term safety of the disposal facility were developed. Geological factors affecting the performance of the natural barrier in each scenario were selected and their relationships were visualized. The constructed FEP list and the visualization of interrelated factors in various scenarios are anticipated to provide essential information for selecting and organizing factors that must be considered in the development of mathematical models for quantitatively evaluating the long-term safety of deep geological repositories. In addition, these findings could be effectively utilized in establishing criteria related to the key performance of natural barriers for the confirmation of repository sites.

A Comparative Study on the Design Element in Traditional Palaces Korea, China and Japan (한 중 일 의장 문화 비교 연구 - 궁궐전출을 중심으로 -)

  • Lee, Hyun-Jung;Park, Young-Soon;Choi, Ji-Young;Hwang, Jung-Ah
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.277-286
    • /
    • 2005
  • The purpose of this study is to ascertain the design element in traditional palaces of Korea, China and Japan. It takes threesteps to proceed this study. Firstly, it needs to be established the analysis framework from the documents. In second step, the design elements - the form, the material, the pattern and the color - should be collected and investigated through the observation of the actual traditional palaces the Changduckung, the Forbidden City, the Nijo castle. The third step is the analysis of the results of the investigation of the design elements from step two. To sum up similarities and dissimilarities among the design element in traditional palaces of Korea, China and Japan is as the following It is to be noticed that the mainly common characteristics of the artistic design are 'naturalism', 'harmonious ideas' and 'confucianism'. But the representation style of the design element is differed from the country. : The typical features of China are symmetry, glassy surface by artificial process, the meandered curve, the magnificent pattern and the constrable color. In Japan, the mathematical asymmetry, made-up rough surface by artificial skill, decorativepattern with abbreviation and achromatic color are important feature of the design element. While the major features of Korean design element are asymmetrical balance with nature, rough surface by natural process, moderate pattern and harmonious color.

  • PDF

Cultivation Condition of Transformant Alcaligenes eutrophus Harboring Cloned phbC Gene for Production of P(3-hydroxybutyrate-3-hydroxyvalernte) Containing High Molar Fraction of 3-Hydroxyvalerate. (P(3-hydroxybutyrate-3-hydroxyvalerate)의 생산을 위한 재조합 phbC 유전자를 형질전환시킨 Alcaligenes eutrophus의 배양조건 검토)

  • 권순일;정영미;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.537-544
    • /
    • 1998
  • The cultivation conditions of transformant Alcaligenes eutrophus AER5 harboring cloned phbC gene for mass production of poly (3-hydroxybutyrate-3-hydroxyvalerate)[P(3HB-3HV)] containing high molar fraction of 3-hydroxyvalerate (3-HV) were investigated. In two-stage batch cultivation, transformant accumulated P(3HB-3HV) containing 52.2 mol% of 3HV compared to 30 mol% of parent strain A. eutrophus H16. The increased 3-HV molar fraction was due to the amplified activity of PHB synthase participating in condensation of 3-HB and 3-HV. To increase efficiency of P(3HB-3HV) accumulation, fructose was added along with precursor compound valerate, and total cell mass and P(3HB-3HV) concentrations remarkably increased, but not 3-HV molar fraction. The effect of magnesium ion showed that P(3HB-3HV) concentration and 3-HV molar fraction were significantly increased upto 6.1 g/L and 71.3 mol% at 0.01 g/L of MgSO$_4$, respectively. The efficiency of several pH adjuster, NaOH, NaOH and (NH$_4$)$_2$SO$_4$, and NH$_4$OH, on total cell mass, p(3HB-3HV) concentration, and 3-HV molar fraction was also compared. To overcome the disadvantage of two-stage cultivation, one-stage intermittent fed-batch cultivation was attempted, such a way 10.0 g/L of fructose was supplied for cell growth at initial 36 hr and then 10.0 g/L of valerate and 5.0 g/L of fructose were applied to induce the accumulation of P(3HB-3HV), consequently, 10.4 g/L of P(3HB-3HV) with 38 mol% of 3-HV fraction could be obtained after 72 hr. These results can be used for elucidating cultivation strategy for mass production of P(3HB-3HV) containing high 3-HV molar fraction using transformant A. eutrophus AER5 harboring cloned phbC gene.

  • PDF

Development of a deep-learning based tunnel incident detection system on CCTVs (딥러닝 기반 터널 영상유고감지 시스템 개발 연구)

  • Shin, Hyu-Soung;Lee, Kyu-Beom;Yim, Min-Jin;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.915-936
    • /
    • 2017
  • In this study, current status of Korean hazard mitigation guideline for tunnel operation is summarized. It shows that requirement for CCTV installation has been gradually stricted and needs for tunnel incident detection system in conjunction with the CCTV in tunnels have been highly increased. Despite of this, it is noticed that mathematical algorithm based incident detection system, which are commonly applied in current tunnel operation, show very low detectable rates by less than 50%. The putative major reasons seem to be (1) very weak intensity of illumination (2) dust in tunnel (3) low installation height of CCTV to about 3.5 m, etc. Therefore, an attempt in this study is made to develop an deep-learning based tunnel incident detection system, which is relatively insensitive to very poor visibility conditions. Its theoretical background is given and validating investigation are undertaken focused on the moving vehicles and person out of vehicle in tunnel, which are the official major objects to be detected. Two scenarios are set up: (1) training and prediction in the same tunnel (2) training in a tunnel and prediction in the other tunnel. From the both cases, targeted object detection in prediction mode are achieved to detectable rate to higher than 80% in case of similar time period between training and prediction but it shows a bit low detectable rate to 40% when the prediction times are far from the training time without further training taking place. However, it is believed that the AI based system would be enhanced in its predictability automatically as further training are followed with accumulated CCTV BigData without any revision or calibration of the incident detection system.

Comparison of Acting Style Between 2D Hand-drawn Animation and 3D Computer Animation : Focused on Expression of Emotion by Using Close-up (2D 핸드 드로운 애니메이션과 3D 컴퓨터 애니메이션에서의 액팅(acting) 스타일 비교 -클로즈-업을 이용한 감정표현을 중심으로-)

  • Moon, Jaecheol;Kim, Yumi
    • Cartoon and Animation Studies
    • /
    • s.36
    • /
    • pp.147-165
    • /
    • 2014
  • Around the turn of 21st century, there has been a major technological shift in the animation industry. With development of reality-based computer graphics, major American animation studios replaced hand-drawn method with the new 3D computer graphics. Traditional animation was known for its simplified shapes such as circles and triangle that makes characters' movements distinctive from non-animated feature films. Computer-generated animation has largely replaced it, but is under continuous criticism that automated movements and reality-like graphics devaluate the aesthetics of animation. Although hand-drawn animation is still produced, 3D computer graphics have taken commercial lead and there has been many changes to acting of animated characters, which calls for detailed investigation. Firstly, the changes in acting of 3D characters can be traced from looking at human-like rigging method that mimics humanistic moving mechanism. Also, if hair and clothing was part of hand-drawn characters' acting, it has now been hidden inside mathematical simulation of 3D graphics, leaving only the body to be used in acting. Secondly, looking at "Stretch and Squash" method, which represents the distinctive movements of animation, through the lens of media, a paradox arises. Hand-drawn animation are produced frame-by-frame, and a subtle change would make animated frames shiver. This slight shivering acts as an aesthetic distinction of animated feature films, but can also require exaggerated movements to hide the shivering. On the contrary, acting of 3D animation make use of calculated movements that may seem exaggerated compared to human acting, but seem much more moderate and static compared to hand-drawn acting. Moreover, 3D computer graphics add the third dimension that allows more intuitive movements - maybe animators no longer need fine drawing skills; what they now need is directing skills to animate characters in 3D space intuitively. On the assumption that technological advancement and change of artistic expressionism are inseparable, this paper compares acting of 3D animation studio Pixar and classical drawing studio Disney to investigate character acting style and movements.

Dry reforming of Propane to Syngas over Ni-CeO2/γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor (충전층 플라즈마 반응기에서 Ni-CeO2/γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질)

  • Sultana, Lamia;Rahman, Md. Shahinur;Sudhakaran, M.S.P.;Hossain, Md. Mokter;Mok, Young Sun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • A dielectric barrier discharge (DBD) plasma reactor packed with $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was used for the dry ($CO_2$) reforming of propane (DRP) to improve the production of syngas (a mixture of $H_2$ and CO) and the catalyst stability. The plasma-catalytic DRP was carried out with either thermally or plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst at a $C_3H_8/CO_2$ ratio of 1/3 and a total feed gas flow rate of $300mL\;min^{-1}$. The catalytic activities associated with the DRP were evaluated in the range of $500{\sim}600^{\circ}C$. Following the calcination in ambient air, the ${\gamma}-Al_2O_3$ impregnated with the precursor solution ($Ni(NO_3)_2$ and $Ce(NO_3)_2$) was subjected to reduction in an $H_2/Ar$ atmosphere to prepare $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst. The characteristics of the catalysts were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDS), temperature programmed reduction ($H_2-TPR$), temperature programmed desorption ($H_2-TPD$, $CO_2-TPD$), temperature programmed oxidation (TPO), and Raman spectroscopy. The investigation revealed that the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst exhibited superior catalytic activity for the production of syngas, compared to the thermally reduced catalyst. Besides, the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was found to show long-term catalytic stability with respect to coke resistance that is main concern regarding the DRP process.

Composition of Curriculums and Textbooks for Speed-Related Units in Elementary School (초등학교에서 속력 관련 단원의 교육과정 및 교과서 내용 구성에 관한 논의)

  • Jhun, Youngseok
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.658-672
    • /
    • 2022
  • The unique teaching and learning difficulties of speed-related units in elementary school science are mainly due to the student's lack of mathematical thinking ability and procedural knowledge on speed measurement, and curriculums and textbooks must be constructed with these in mind. To identify the implications of composing a new science curriculum and relevant textbooks, this study reviewed the structure and contents of the speed-related units of three curriculums from the 2007 revised curriculum to the 2015 revised curriculum and the resulting textbooks and examined their relevance in light of the literature. Results showed that the current content carries the risk of making students calculate only the speed of an object through a mechanical algorithm by memorization rather than grasp the multifaceted relation between traveled distance, duration time, and speed. Findings also highlighted the need to reorganize the curriculum and textbooks to offer students the opportunity to learn the meaning of speed step-by-step by visualizing materials such as double number lines and dealing with simple numbers that are easy to calculate and understand intuitively. In addition, this paper discussed the urgency of improving inquiry performance such as process skills by observing and measuring an actual object's movement, displaying it as a graph, and interpreting it rather than conducting data interpretation through investigation. Lastly, although the current curriculum and textbooks emphasize the connection with daily life in their application aspects, they also deal with dynamics-related content somewhat differently from kinematics, which is the main learning content of the unit. Hence, it is necessary to reorganize the contents focusing on cases related to speed so that students can grasp the concept of speed and use it in their everyday lives. With regard to the new curriculum and textbooks, this study proposes that students be provided the opportunity to systematically and deeply study core topics rather than exclude content that is difficult to learn and challenging to teach so that students realize the value of science and enjoy learning it.

A Rheological Study on Creep Behavior of Clays (점토(粘土)의 Creep 거동(擧動)에 관한 유변학적(流變學的) 연구(研究))

  • Lee, Chong Kue;Chung, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1981
  • Most clays under sustained load exhibit time-dependent deformation because of creep movement of soil particles and many investigators have attempted to relate their findings to the creep behavior of natural ground and to the long-term stability of slopes. Since the creep behavior of clays may assume a variety of forms depending on such factors as soil plasticity, activity and water content, it is difficult and complicated to analyse the creep behavior of clays. Rheological models composed of linear springs in combination with linear or nonlinear dashpots and sliders, are generally used for the mathematical description of the time-dependent behavior of soils. Most rheological models, however, have been proposed to simulate the behavior of secondary compression for saturated clays and few definitive data exist that can evaluate the behavior of non-saturated clays under the action of sustained stress. The clays change gradually from a solid state through plastic state to a liquid state with increasing water content, therefore, the rheological models also change. On the other hand, creep is time-dependent, and also the effect of thixotropy is time-function. Consequently, there may be certain correlations between creep behavior and the effects of thixotropy in compacted clays. In addition, the states of clay depend on water content and hence the height of the specimen under drained conditions. Futhermore, based on present and past studies, because immediate elastic deformation occurs instantly after the pressure increment without time-delayed behavior, the factor representing immediate elastic deformations in the rheological model is necessary. The investigation described in this paper, based on rheological model, is designed to identify the immediate elastic deformations and the effects of thixotropy and height of clay specimens with varing water content and stress level on creep deformations. For these purposes, the uniaxial drain-type creep tests were performed. Test results and data for three compacted clays have shown that a linear top spring is needed to account for immediate elastic deformations in the rheological model, and at lower water content below the visco-plastic limit, the effects of thixotropy and height of clay specimens can be represented by the proposed rheological model not considering the effects. Therefore, the rheological model does not necessitate the other factors representing these effects. On the other hand, at water content higher than the visco-plastic limit, although the state behavior of clays is visco-plastic or viscous flow at the beginning of the test, the state behavior, in the case of the lower height sample, does not represent the same behavior during the process of the test, because of rapid drainage. In these cases, the rheological model does not coincide with the model in the case of the higher specimens.

  • PDF